HiSoft BASIC
Professional

3 AMIGA Version

LEBEENPP0E0000000000000000000900000000008

¥Michiron ¥

{ .
A{_ i v

(ST o oY ST Y oY SY ¥ o O ¥ o of oY oY oY Y ¥ ¥ Y oY oY ¥ ¥ o¥ oY o¥ oF oY o¥ Y oY oY oY 2y ¥ ¥ Y ¥ 2 ¥ 2
[

HiSoft
BASIC

FFFFFFFFFFF

00

Hisoft BASIC Professional

Page ii

/

HiSoft
BASIC
Professional

Fast Interactive BASIC Compiler
For the AMIGA
From HiSoft

Published by MiCHTRON Inc.
576 South Telegraph
Pontiac, Michigan 48053
(313) 334-5700
BBS: (313) 332-5452

HiSoft BASIC Professional page iii

HiSoft BASIC Professional

Fast Interactive BASIC Compiler

Reference Manual

Published by MichTron U.S.A.
576 South Telegraph

Pontiac, Michigan 48053

T (313) 334-5700

BBS (313) 332-5452

Software by HiSoft

ISBN 0-944500-22-6

Page iv Hisoft BASIC Professional

g

1
0000000000000 00000000000000000C00OOCOCCROCKOCOOOPOIOTS

YOUR RIGHTS AND OURS: This copy of HISOFT BASIC PROFESSIONAL is
licensed to you. You may sell your copy without notifying us. However, we
retain copyright and other property rights in the program code and documentation.
We ask that HISOFT BASIC PROFESSIONAL be used cither by a single user on one

or more compulers or om a single computer by ome or more users. If you expect
several users of HISOFT BASIC PROFESSIONAL on several computers, contact us
for quantity diskounts and site-licensing agreements. Also if you intend to remt

this program, or place this program on a BBS, contact us for the appropriate
license and fee.

We think this user policy is fair to both you and us; please abide by it. We will
not tolerate use or distribution of all or part of HISOFT BASIC PROFESSIONAL or
its documentation by any other means.

LIMITED WARRANTY: In return for your understanding of our legal rights, we
guarantee HISOFT BASIC PROFESSIONAL will reliably perform as detailed in this
documentation, subject to limitations here described, for a period of thirty days.
If HISOFT BASIC PROFESSIONAL fails to perform as specified, we will either
correct the flaw(s) within 15 working days of notification or let you return
HISOFT BASIC PROFESSIONAL to the retailer for a full refund of your purchase
price. If your retailer does not cooperate, return HISOFT BASIC PROFESSIONAL to
us. While we can't offer you more cash tham we received for the program, we can
give you this choice: 1) you may have a cash refund of the wholesale price, or 2)
you may have a merchandise credit for the retail price, which you may apply
toward buying any of our other software. Naturally, we insist that anmy copy
returned for refund include proof of the date and price of purchase, the original
program disk, all packaging and documentation, and be in salable condition.

If the disk om which HISOFT BASIC PROFESSIONAL is distributed becomes
defective within the warranty period, return it to us for a free replacement. After
the warranty period, we will replace any defective program disk for $5.00.

We cannot be responsible for any damage to your equipment, reputation, profit-
making ability or mental or physical condition caused by the use (or misuse) of
our program.

We cannot guarantee that this program will work with hardware or software not
generally available when this program was released, or with special or custom
modifications of hardware or software, or with versions of accompanying or
required hardware or software other than those specified in the documentation.

Under no circumstances will we be liable for am amount greater tham your purchase
price.

Please note: Some states do not allow limitations om how long an implied or
express warranty lasts, or the exclusion or limitation of incidental or
consequential damages, so some of the above limitations or exclusions may not
apply to you. ’

UPGRADES AND REVISIONS: If you return your information card, we will
notify you if upgrades to HISOFT BASIC PROFESSIONAL become available.

FEEDBACK: Customer comments are VERY important to us. We think that the
use, warranty and upgrade policies outlined above are among the fairest around.
Please let us kmow how you feel about them.

Many of the program and documentation modifications we make result from
customer suggestions. Please tell us how you feel about HISOFT BASIC
PROFESSIONAL - your ideas could make the next version better for all of wus.

COPYRIGHT NOTICE: The HISOFT BASIC PROFESSIONAL program code and ils
documentation are Copyright 1988 HiSoft and MICHTRON, Inc.

HiSoft BASIC Professional

page v

Hisoft BASIC Professional

Page vi

Table of Contents

Preface to HiSoft BASIC Professional

Introduction 1
How to use this Manual 2
A Course for the Beginner 2
A Course for Seasoned BASIC Programmers 3
System Requirements 3
Typography 4
Acknowledgements 5
Chapter 1 Introduction 7
Always make a back-up 7
Registration Card 7
The README File 7
Chapter 2 HiSoft BASIC Professional Tutorial 9
Introduction 9
Your First Program 9
Compiling to Disk 11
More Advanced Programming 13
A Phone Directory 14
What's in a Name? 14
The Key to Success 15
Well FIELD 16
Data Entry Program 17
Vee hdf vays... 19

Table of Contents Page vii

Towers of Hanoi 21
The Problem 21
Brain-ache Time 21
Here we go 25
Adding Graphics 27
Nearly there 32
Just when you thought it was safe. .. 34

Chapter 3 How to use HiSoft Professional 35

Introduction 35

What's on the Disks 35
Disk 1 35
Disk 2 36

The Editor 36
A Few Words about Requesters 37
The File Requester 38
Entering text and Moving the cursor 38
Quiitting HiSoft BASIC Professional 41
Deleting text 41
Disk Operations 42
Searching 43
Block Commands 44
Miscellaneous Commands 46
Compiling and Running Programs 48
Jump to Error 49

Window Usage 49

Automatic Double Clicking 49

Chapter 4 Concepts 51

Character Set 51

Program lines and labels 53

Data Types 56
Strings 56
Integers 56
Long Integers 56
Single precision numbers 56
Double precision numbers 57

Page viii Table of Contents

Constants 57
Decimal numbers 57
Hexadecimal Constants 57
Octal Constants 58
Binary Constants 58
Character constants 59
Types of Constants 59
Variables 60

Arrays 62

Operators 63

Sub-programs 66
Variable Parameters 67
Value Parameters 69
STATIC variables 69
SHARED variables 70
Recursion 72
User-Defined Functions 73
Arrays and Sub-programs 76
Local Arrays 77

Advanced Arrays 78

Limitations 80

Chapter 5 Command Reference 83

ABS function 84

AREA statement 85

AREAFILL statement 86

ASC function 87

ATN function 88

BEEP statement 89

BIN$ function 90

BLOAD statement 91

BREAK statement 92

BSAVE statement 93

CALL statement 94

CALL LOC statement 96

CALLS statement 97

Table of Contents Page ix

CDBL function 98
CHAIN statement 99
CHDIR statement 100
CHRS$ function 101
CINT function 102
CIRCLE statement 103
CLEAR statement 105
CLNG function 106
CLOSE statement 107
CLS statement 108
COLLISION statement 109
COLLISION function 110
COLOR statement 111
COMMANDS function 113
COMMON SHARED statement 114
CONST statement 115
COS function 116
CSNG function 117
CSRLIN function 118
CvD 119
DATA statement 121
DATES function 122
DECLARE statement 123
DECR statement 124
DEF FN statement 125
DEFDBL, DEFINT, 128
DIM statement 129
DO...LOOP statement 131
END statement 133
EOF function 135
ERASE statement 136
ERL 137
ERROR statement 138
EXIT statement 139
EXP function 140
Page x Table of Contents

FEXISTS function 141
FIELD statement 142
FILES statement 143
FILL statement 144
FIX function 145
FOR...NEXT statement 146
FRE function 148
GET file 1/O statement 149
GET graphics statement 150
GOSUB...RETURN 152
GOTO statement 154
HEXS$ function 155
IF...THEN.. ELSE 156
INCR statement 158
INKEY$ function 159
INPUT statement 161
INPUT# statement 162
INPUTS statement 163
INSTR function 164
INT function 165
KILL statement 166
LBOUND function 167
LCASE$ function 168
LEFT$ function 169
LEN function 170
LET statement 171
LIBRARY statement 172
LINE statement 173
LINE INPUT statement 175
LINE INPUT# statement 176
LOC function 177
LOCAL statement 178
LOCATE statement 179
LOF function 180
LOG 181
Table of Contents Page xi

LPOS function 182
LPRINT, LPRINT USING 183
LSET statement 184
MENU statement 185
MENU function 187
MID$ function 188
MID$ statement 189
MKDIR statement 190
MKI$ 191
MOUSE function 193
MOUSE statement 195
NAME statement 196
OBJECT statements 197
OCTS$ function 198
ON...BREAK statement 199
ON...COLLISION statement 200
ON...ERROR statement 201
ON...GOSUB statement 202
ON...GOTO statement 203
ON...MENU statement 204
ON...MOUSE statement 205
ON...TIMER statement 206
OPEN statement 207
OPTION BASE statement 209
PAINT statement 210
PALETTE statement 211
PATTERN statement 212
PCOPY statement 213
PEEK 214
POINT function 215
POKE, POKEB, POKEL, POKEW 216
POS function 217
PRESET statement 218
PRINT statement 219
PRINT# 221
Page xii Table of Contents

PRINT USING statement 222
PSET statement 225
PTAB function 226
PUT file 1/O statement 227
PUT graphics statement 228
RANDOMIZE statement 229
READ statement 230
REDIM statement 231
REM statement 232
REPEAT...END REPEAT 233
RESET statement 235
RESTORE statement 236
RESUME statement 237
RETURN statement 238
RIGHTS function 239
RMDIR statement 240
RND function 241
RSET 242
RUN statement 243
SADD function 244
SAY statement 245
SCREEN statement 246
SCROLL statement 248
SELECT...END SELECT 249
SGN function 251
SHARED statement 252
SIN function 253
SLEEP statement 254
SOUND statement 255
SPACES$ function 257
SPC function 258
SQR function 259
STATIC statement 260
STICK function 261
STOP statement 262
Table of Contents Page xiii

STR$ function
STRIG function
STRINGS$ function
SUB...END SUB
SWAP statement
SYSTAB function
SYSTEM statement
TAB function

TAN tunction
TIMES$ tunction
TIMER statement
TIMER function
TRANSLATES function

TRON,TROFF statements

UBOUND function
UCASES$ function
VAL function
VARPIR function
VARPTRS function
WAVE statement
WHILE...WEND
WIDTH statement
WINDOW statements
WINDOW Function
WRITE statlement
WRITE# statement

263
264
265
266
268
269
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
290
291
292

Page xiv

Table of Contents

Appendix A Compiler Options 293
Meta-Commands 293
REM SEVENT 293

REM SINCLUDE 293

REM SOPTION 294
Compiler Options 294
Array Checks 294

Break Checks 295

Error Messages 295

Icon File 295

Keep Size 296

Line Numbers 296

Linkable Code 296

Output Filename 297

Overflow Checks 297

Stack Checks 298
Stand-Alone Code 298
Symbolic Debug 298
Underlines 298

Variable Checks 299

Warnings 299

Window Defeat 299
Advanced Options 299
Temporary String Descriptors 300

Maths Stack 300

Option Summary 300
Once-only Options 300
Changeable Options 301

Using HiSoft BASIC Professional from the CLI 301
Using the Editor from the CLI 301

Using the Compiler from the CLI 302
Changing Stack Size 302
Shared Library 303
Defeating the Initial Window 304
Opening your own Initial Window 304

Creating CLI 304

Table of Contents Page xv

Appendix B Errors 305
AmigaDOS Error Numbers 305
Run-time Errors 306

Fatal Run-time Errors 306
Non-fatal Run-time Errors 308
Run-time Errors Alphabetically 309
Compilation Errors 313
Compiler Error Messages 314

Appendix C Converting Programs 327
Introduction 327
AmigaBASIC Compadtibility 327

De-tokenising 327
Other Conversions 329

Appendix D Reserved Words 331

Appendix E Assembly Language Details 333
Code Generation 333

Register Usage 333
Low Level Debugging 336
Finding Your Way 336
The Heap 337
Memory Formats 338
Single-precision Floating Point 338
Double-precision Floating Point 338
Linkable Code 339
External Definition 339
Page xvi Table of Contents

.Q.QQQ.......Q.....Q............Q.........

Appendix F Hints and Tips 341
Using HiSoft BASIC Professional 341
defint a-z 341
rem Sopftion v+ 341
STATIC variables in SUBs and FNs 341
INCR and DECR 342
— 342
| as opposed to # 342
VARPTR, SADD and PEEK 342
Making Your Programs "No-Limits" 343
Appendix G Bibliography 345
BASIC 345
Amiga BASIC 345
AmMIgaBASIC Inside and Out 345
Advanced Amiga BASIC 345
Amiga Technical Manuals 346
Programmer's Guide to the Amiga 346
ROM Kemal Manuals Volumes 1 and 2 346
Intuition - The Amiga User Interface 346
68000 347
Mé68000 Programmer's Reference Manual 347
68000 Tricks and Traps 347
Appendix H Technical Support 349
Upgrades 349
Suggestions 349
Index
Table of Contents Page xvii

00000000000 0000000000000000000000000000O0CKOOFKF°

Table of Contents

Page xviii

Preface to HiSoft BASIC
Professional

Infroduction

HiSoft BASIC Professional for the Amiga range of computers is a
powerful and modern version of the BASIC language that gives you a
totally integrated and interactive environment to make production of
your programs easier than it ever has been.

HiSoft BASIC Professional is the result of many years design and
programming effort and our goal was to produce a BASIC compiler
with the following features:

. interactive edit/compile/run cycle, like an interpreter
. compile AmigaBASIC™ normally without change
] compile Microsoft QuickBASIC™ with minimal change

. compile most flavours of BASIC with little modification

. easily port programs from the PC and the Atari ST

J fast compile time and very fast execution time

. full recursive sub-programs and functions with parameters

. many structured statements like WHILE... WEND, DO...LOOP
UNTIL, SELECT...CASE etc.

. full support for the Amiga through the use of libraries
. clear error reporting and correction
. no limits on variable size

Thanks to the power and flexibility of the Amiga and its operating
system, we have been able to implement all of these design goals in
the HiSoft BASIC Professional compiler and the results are explained
in detail in this manual.

Please spend some time and effort getting to know and learning how
to use the manual so that you can gain the maximum benefit from
HiSoft BASIC Professional.

The rest of this section explains how to use the manual, whether you
are a beginner or an expert, how to use your Amiga to best effect with
HiSoft BASIC Professional and, finally, we outline the different type
styles that we have used throughout the manual to (hopefully) make
it easy and enjoyable to use.

Preface Page 1

How to use this Manual

This manual does not attempt to teach you BASIC, there are
hundreds of good books that do this most adequately and we would
encourage you to get hold of one (perhaps through your local library)
if you are new to BASIC.

Instead, we have designed this manual to tell you about HiSoft BASIC
Professional on the Amiga. We have packed a great deal of
information about the package into the manual and, in order to help
you use it efficiently and easily, we will now plot recommended
courses through the manual for you, whether you are a beginner to
BASIC or a seasoned expert.

|A Course for the Beginner]

Start by reading the rest of this Preface, then Chapters 1 and 2 in
order. You may find that you want to skip some of the explanation in
Chapter 2 (The Tutorial) but we would encourage you to finish the
programs to gain experience in using the editor and compiler.

You should then be ready to begin writing your own programs. You
will need to refer to Chapter 3 for details on how to use the editor and
Chapter 5 for the commands that HiSoft BASIC Professional allows
you to use.

The Appendices are mainly for reference and you will only need to dip
into them occasionally. Appendix A details the various options you
can use when compiling to get maximum flexibility and/or speed.
Appendix B will be useful if you have turned off the run-time error
messages or if you need more information on the compiler's error
messages. You should look at Appendix C if converting programs
from magazines or from other computers. You will only need
Appendices E and F when you progress to advanced topics while
Appendices D and G are useful for reference at any time.

We hope you find HiSoft BASIC Professional easy and friendly to
use, please do not hesitate to write to us with any suggestions for
improvements and/or alterations.

Page 2 Preface

A Course for Seasoned BASIC Programmers

If you are already familiar with BASIC programming and also with
the Amiga computer then we recommend that you use the manual in
the following way.

Firstly, finish reading this Preface and then Chapter 1. If you are
eager to start programming then simply double-click on HiSoft
BASIC Professional (on your working disc!) and refer to Chapters 3,
4 and 5 for details of how to use the editor and compiler and
information on our implementation of BASIC.

However, we would advise you to work through Chapter 2, The
Tutorial, first since it is through experience that most people learn
most efficiently and quickly; it should take roughly 1 hour to
complete all parts of the tutorial.

The Appendices are for reference and it is worth glancing through all
of them to acquaint yourself with the contents.

Good luck, we hope you find HiSoft BASIC Professional a powerful,
flexible and easy-to-use development system. Of course, we welcome
any written comments you may have on how we might improve both
the program and the manual.

System Redquirements

¢ Amiga A500 and upwards with Kickstart 1.2 or higher
0 1 floppy disk drive
. Monochrome or color monitor or TV

It is a general fact of life that the more memory and disk drives you
have, the easier your development will be. A500 owners who have not
upgraded their RAM may run out of memory when attempting to
compile larger programs. To minimise this problem the compiler
must be given as much memory as possible in which to run.
Normally you should run the system from the Workbench by
double-clicking on the HiSoft BASIC Professional icon; using a CLI will
eat up more memory and restrict the size of program you can work
with on an A500 in interactive mode.

Upgrades to a megabyte of memory are available at very reasonable
prices and we strongly recommend this, not just for HiSoft BASIC
Professional but for general use too.

Preface Page 3

Typography

In order to make the manual easy to read and to convey the
maximum information as clearly as possible, we have adopted
certain typefaces and typestyles throughout the manual. These are
used as follows:

Typefaces

Bookman General text

Avant Gard Bold Chapter and sub-Chapter headings and
references to them. Also used to show concept
words such as BASIC statements etc.

Courier Used to show something that is typed in at the
keyboard or displayed on the screen.

Note that Avant Garde and Courier are sometimes used
interchangeably in order to aid readability where appropriate.

Typestyles

Bold Mainly for emphasis.

Italic Occasionally for emphasis. Mainly used in syntax
descriptions to show something to be filled in e.g.
INT (numeric expression) where

numeric_expression is to be replaced by an
expression when INT is used in a program.

Special Characters

1] Within syntax descriptions, information enclosed
in [] is optional e.g. [CALL] sub program name
means that you can call a sub-program TEST by cALL
TEST or simply by TEST.

{} Within syntax descriptions this indicates a choice of
one or more options, each separated by a vertical bar
(1) e.g. PRINT [expression 1] [{;| I,)
expressionZ].. indicating that expressions in PRINT
statements may be separated by a semi-colon, a
space or a comima.

Page 4 Preface

Indicates repetition in syntax descriptions.

Vertically-spaced dots show that some part of a
program has been omitted

Acknowledgements

The trademarks (both registered and otherwise) of various
companies are used throughout this manual. In particular:

Amiga is a trademark of Commodore-Amiga, Inc.
QuickBASIC is a trademark of Microsoft Corp.
TurboBASIC is a trademark of Borland International Inc.

HiSoft BASIC Professional, Power BASIC, Devpac, GenAm and
MonAm are trademarks of HiSoft.

We acknowledge any other trademark used but not listed above.

We would like to thank the following people for their invaluable help
in the production of HiSoft BASIC Professional and this manual:

Dave Howorth, Stephan <grin> Somogyi, Sue (for her un-ending
patience), Natalie (for keeping us smiling), Julie (for all the hugs,
thanks JC), the girl with the dog and all the staff at The Old Bell!

Preface Page 5

Preface

Page 6

Chapter 1
Infroduction

Always make a back-up

Before using HiSoft BASIC Professional you should make a back-up
copy of the distribution disk and put the original away in a safe place.
It is not copy-protected to allow easy back-up and to avoid
inconvenience. The disk should be backed-up using the Workbench
or any back-up utility - before making any backup always write-
protect the master to prevent accidental erasure.

Registration Card

Enclosed with this manual is a registration card which you should
fill in and return to us after reading the licence agreement. Without it
we will not be able to offer you technical support or upgrades.

The README File

As with all HiSoft products HiSoft BASIC Professional is continually
being improved and the latest details that cannot be included in the
manual may be found in the README file This file should be read at
this point, by double-clicking on its icon from the Workbench.

Introduction Page 7

Introduction

Page 8

Chapter 2
Tutorial

Infroduction

This chapter is going to take you through the stages of designing,
writing, compiling and running programs in HiSoft BASIC
Professional.

It will concentrate on how to use the editor and compiler so that you
can quickly teach yourself how to use thie fast, interactive
programming environment.

We will not try to teach BASIC programming in this chapter, it is
solely intended to get you going with HiSoft BASIC Professional.
There are plenty of good books on programming with AmigaBASIC
(remember, HiSoft BASIC Profesional is compatible with
AmigaBASIC); some of these are listed in the Bibliography - two we
would particularly recommend are AmigaBASIC Inside and Out by
Abacus and Advanced AmigaBASIC by Computer Publications. We
can supply both of these books.

So, turn on your Amiga, insert your backup of HiSoft BASIC
Professional disk 1 and

From your Backup of disk 1 double click on the HiSoft icon and wait
until the editor window appears; a normal Amiga window with a grow
box at the bottom right, a close box at the top left and the front-back
boxes top right. Now type in this 5-line progam:

t=TIMER
DO WHILE TIMER<t+20

x=MOUSE (1) : y=MOUSE (2)

IF MOUSE (0) THEN LINE (x,y) - (x+30,y+30),,bf
LOOP

It doesn't matter if keywords like TIMER, DO, LOOP etc. are in upper-,
lower- or mixed-case; it is good programming style to put them in
upper-case but the compiler doesn't care.

Tutorial Page 9

This is a very simple little program that reads the current position of
the mouse cursor (x=MQUSE(1) : y=MOUSE(2)), waits for you to click on
the left mouse button (IF MOUSE(O) ...) and then draws a box at the
position of the mouse cursor (LINE (x.y)-(x+30,y+30)..bf). After 20
seconds it times out and finishes (DO WHILE TIMER<t+20 ... LOOP).

Ok, you want to run it? Press AX by which we mean hold the right
Amiga key down and press X (lower- or upper-case X). There's
another way you can run a program - choose Run from the Program
menu. However you have chosen to run the program, you will now see
a small window appear with the title Compiling... and, within the
window, you will see messages like Tokenising, Parsing and
Generating Code - this is the compiler telling you what it is doing.
On this small program these messages will appear very quickly.

If you have an error in your program then the compiler will tell you
about it by means of an error number and an error message and it
will then ask you Continue(Y/N)? We recommend very strongly that,
while you are getting used to using HiSoft BASIC Professional, you
always reply N to this question. Replying N will take you back to the
editor screen, positioned on the line where the error occurred and
with the error message displayed in the bottom right of the window
so that you can correct the error and run the program again.

When the program has compiled successfully, you will see some
information about the size of the program and then be asked to Press
any key. Do this and the program will execute ... move the mouse
around the screen, click the left button and see how easy it is to draw
little white boxes! After 20 seconds you will be prompted to press a
key, then you will be returned to the editor.

Have you noticed how easy it is to write a windowed program? That's
because HiSoft BASIC Professional automatically opens up a window
for your program and closes it down when the program finishes. You
can create borderless windows if you want - see the WINDOW
statement in the Command Reference chapter.

One final point on this simple program - did you notice the DO
statement? This is a very flexible structure that is not available in
AmigaBASIC but allows you to do many different types of loops with
one statement, see the Command Reference for details.

Page 10 Tutorial

Compiling to Disk

Now we'll show you how to create stand-alone programs that you
can give-away or sell - but first let's type in a more interesting
program. Select New from the Project menu (hold the right mouse
button down, move the mouse up to the word Project, down to New
and release the right mouse button) - a box will appear saying OK to
lose changes?, left-click on the OK button. Type in this, pressing the
Return key at the end of each line:

Patterns:

CLS

RANDOMIZE TIMER

cx=32 : cy=100 : pi=3.14159265#
xs=cx/4+cx*RND/2 : ys=cy/4+cy*RND/2
COLOR INT (3*RND+1)

FOR k=0 TO 500 STEP 4*pi*RND+1

X=CX+Xs*COS (k) : y=cy+ys*SIN(k)
IF k=0 THEN PSET(X,y) ELSE LINE -(X,y)
NEXT k

GOTO Pattern

Press AX to compile and run your program. If you typed it in exactly
as above the compilation should stop with an error: Line
number/label missing ... on line 11. Answer N to the Continue(Y/N)
message and you will be returned to the editor on line 11. Can you
spot the deliberate mistake? That's right, Pattern should be Patterns
(plural) because that was the label defined on line 1 of the program.
So change Pattern to Patterns by typing an s at the end of the line.
Press AX to compile and run the program again - this time it should
compile without error, press a key and it will run. Fast, isn't it?

The program repeats itself indefinitely and you may begin to get
bored after a while! Move the mouse pointer up to the close box in the
top left of the window and left-click - this will take you back to the
editor.

Let's save this program to disk - press AS and a file requester will
appear (for details see Chapter 2). Type in the name of the program
Patterns.Bas, say, and then left-click on OK. If the disk is full then
you will see a System Request box telling you this; click on Cancel,
swap disks and try again.

Tutorial Page 11

Ok, you have now saved the source code of your program to disk but
you can only run the source code either from the interpreter (you
might be interested to try that) or from within the HiSoft BASIC
Professional environment. If you want to create a stand-alone
program that you can run from the Workbench or from a CLI then
you must compile your program to disk rather than to memory
which is what we have been doing up to now. So type AC which will
bring up a large box entitled HiSoft BASIC Professional Compiler
Options; you can left-click on the various buttons to turn these
options on and off and the options are described fully in the next
chapter. For now, simply left-click on the Disk button which is
towards the bottom of the box, then left-click on the No box opposite
the words Shared Library and then click on Compile.

Your program will now be compiled to disk under the name Patterns -
again, if the disk becomes full, find a disk with space and repeat the
compilation. When complete, you can go back to the Workbench by
typing AQ and double-click on Patterns to run it. Remember to click
in the close box to stop the program.

If you type in a new program and then compile it to disk without
saving it first then the compiled program will be called NONAME,
because, when you compiled it, it had no name.

There you are - you have just created your own, directly run-able
program on the Amiga which needs no other files to run. You are free
to give it away or sell it now, though you might wait until it's a bit
more exciting before trying to sell it to someone!

(You are not free to give away or sell copies of the compiler itself
though - that infringes our copyright. You can only re-distribute
compiled programs).

If you had not clicked on No after Shared Library then your program
would have been compiled in such a form that it would need the
hisoftbasic.library to be present in the libs folder of the system and
therefore would not be truly stand-alone. The advantage of this is
that the compiled programs are much smaller because they are
sharing the hisoftbasic.library library, the disadvantage is that they
need this other file to be present - you can't win them alll

Page 12 Tutorial

You are now ready to start typing in programs of your choice, such
as programs from magazines or books like those in the Bibliography.
However, if you still feel unsure, then we now present two rather
longer programs that you may wish to read through and type in to
gain more experience. We are going to concentrate on structure and
style in these next programs and will be using some concepts (like
recursion) that AmigaBASIC does not have. If you are new to BASIC,
please read one of the tutorial books listed in the Bibliography before
getting too involved in the following two examples.

More Advanced Programming

We are going to develop two programs in order to experience as many
of the features of our flavour of BASIC as possible in a short time. The
second of these programs is a solution to the famous Towers of
Hanoi problem while the first is a simpler example of file handling,
building-up and interrogating a small telephone directory.

In both cases, we are going to emphasize the importance of modular,
so-called top-down programming where you think out the problem
very carefully before committing anything to paper, let alone floppy
disk!

In the past, this style of programming has not been encouraged by
most BASIC interpreters and compilers, the emphasis has been on
guick-and—dirty rogram writing leading to a preponderance of

OTOs and IF...THENs making the program resemble a mass of
soggy, over-cooked spaghetti! Almost impossible for anybody
(including you) to untangle and distinctly un-pallettable.

To be fair to BASIC, the ease of program creation along these lines
has done more than anything else to increase the number of people
actually programming computers and the ubiquitous home
microcomputer would have been far less exciting without an easy-to-
use language built in to it.

However, BASICs in the last few years have started to address the
spaghetti problem and have added many constructs borrowed from
more grown-up languages like Pascal, Modula-2 and C, allowing
structured programs to be created which are far easier to read,
maintain and which, arguably most importantly, tend to work first
time. Our starting point in developing HiSoft BASIC Professional was
that we should implement the most modern of these BASICs,
Microsoft QuickBASIC™, while retaining the ease of interpretative-
style development and adding a powerful interface to the Amiga
system features.

Tutorial Page 13

Thus, HiSoft BASIC Professional brings you a modern, extended
BASIC on your Amiga, which is also fully compatible with
AmigaBASIC itself, and the aim of the rest of this chapter, apart
from giving you practice in using HiSoft BASIC Professional, is to
show you how to develop such modular, structured programs. Of
course, you may be an old hand at this already and, if so, please bear
with any extended explanation and treat this as an exercise in
getting to grips with HiSoft BASIC Professional as quickly as
possible.

Enough philosophy, let's get down to work.

A Phone Directory

We are going to design and implement a simple telephone directory
from which we can reference a particular entry by quoting the area
code (STD code to us British people).

We assume that you have already worked through the first part of
this chapter and are reasonably familiar with using the editor to
create, amend and compile programs.

There will be two programs, one to enter the data and one to
interrogate it.

First of all we have to decide on what information we are going to
remember and then how we are going to store it on disk.

[What's in a Name? |

In our telephone directory, it will be useful to remember the first and
last names of the person, the country code, area code and telephone
number.

The problem with this kind of information is that it is of variable
length and therefore, if we simply write the data to our directory as it
is, in sequence, we have to search through the entire directory to find
a match because we don't know where each record starts (they're
variable in length, remember). This will be painfully slow for a large
directory (although efficient on space). In this example we shall show
a way of getting at a specific entry in a short time although we will
use more disk space in doing so.

At this point we need to look at the type of files that HiSoft BASIC
Professional can handle; there are two specific types: sequential and
random-access.

Page 14 Tutorial

When writing to or reading from a sequential file, the data is
organised in no particular fashion; it is processed in the sequence
that it was specified relative to the beginning of the file. This means
that you cannot write byte number 345 to the file and then bytes 1
through 344; data is written as if it's in a continuous stream.

On the other hand, random-access files consist of records that may
be accessed in any order. These records have a fixed length which
you specify in your BASIC program. A record may also be divided
into smaller parts that hold different bits of information.

[The Key to Success

Random-access files are precisely what we need for our directory
because we can hold a short key for each directory entry at the
beginning of the file that is associated with the record number of the
entry we want. You can then get to each record directly, by giving the
key. Normally this key would be worked out from the name by some
method (often involving a technique called hashing) and may even
point to the record number directly without the need for a secondary
look-up. However in this case we shall use the Area Code as the key
because the programming is simpler, you can always extend it
yourself!

Since we have to have a fixed record length, we must decide how a
record is to be organised. To go into each record we have the first and
last names and the various parts of the telephone number.

Let's set the limit at 10 characters per name, i.e. 10 for the first and
10 for the last. Numeric data isn't quite as easy. The country and
area codes are usually relatively short (numeric values smaller than
32767), so they can fit into a (16-bit) short integer each. The actual
phone number is 7 digits on the average and must be stored in a (32-
bit) long integer. BASIC can't store numeric data in random-access
files directly, so we have to convert it into strings first. This will be
covered in greater detail later.

Tutorial Page 15

Well FIELDed]

The statement for defining a record from BASIC is FIELD. For our
purposes, defining records looks like this:

field #1, 10 as firstname$, 10 as lastname$,
2 as councode$, 2 as areacode$, 4 as phonum$

field #1, 28 as key$

These two statements do the same thing as far as defining the
record size (28 characters in each case) but allow the record to be
referenced either in its entirety through key$ or in the parts
specified in the first FIELD statement. The #1 will be described in
detail later.

The string variables that make up a record aren't quite what they
seem: they are so-called fielded variables. The difference between
them and ordinary string variables lies in the way the fielded
variables receive their values: the LSET and RSET statements must be
used. LSET left-justifies a string and RSET right-justifies a string.

These statements must be used to make sure that the string fits into
its template; if the string is too long for the fielded variable, it is
shortened to fit, if the string is too small, it is moved either to the
right or the left of the space allocated for the fielded variable and
padded with the necessary amount of spaces.

One final important part of dealing with files of any type is how to
actually get at the information in a file. To do this we must OPEN a file.
This statement specifies the file you wish to access, how you would
like to access it and which channel should be used. The mode of
access depends on the type of file, in our case random-access. The
channel number is a feature of BASIC. Once you have opened a file it
is not referenced by its name but rather by its channel. The #1 in the
FIELD statement above meant that the record is defined for the file at
channel 1. You specify the record length in OPEN by using len. Since
you cannot define a record before opening the file, you have to specify
the record length here first and then using the FIELD statement.

Page 16 Tutorial

[Data Entry Program

With the above preliminaries out of the way we can begin to design
the data entry program. The OPEN and FIELD statements for our
program look like this:

defint a-z

open "PHONE.DIR"™ for random as #1 len=28

field #1, 10 as firstname$, 10 as lastname$,
2 as councode$, 2 as areacode$, 4 as phonum$

field #1, 28 as key$

Type the above into the HiSoft BASIC Professional editor (having
clicked on New on the Project menu to clear out any existing
program) and save it as MAKETELE . BAS.

Now it is time to enter the data for our directory and prepare the key
of the file so that we can find a particular entry by its area code. Our,
admittedly slightly limited, directory can hold 7 entries. The best
place to keep the key information about which entry has which area
code is in the first record so it can be accessed quickly. This is the
reason the fielded variable key$ exists. It will hold the information in
the format area code, record number, area code, record number etc.

Tutorial Page 17

Type the following after the FIELD statements:
dim allkeys$ (8)

for datact=2 to 8
input "First name: ", frst$
if len(frst$)=0 then exit for
lset firstname$=frst$

input "Last name: ",1lst$
lset lastname$=1lst$

input "Country code: ",cntry
lset councode$=mki$ (cntry)

input "Area code: ", areac
lset areacode$=mki$ (areac)

input "Phone number: ",phne&
lset phonum$=mkl$ (phne&)

allkeys$(datact)=mki$ (areac)
put #1,datact

next datact

This is a standard FOR...NEXT loop. As you can see, the program asks
for the relevant data and uses LSET to put the data into the fielded
variables. The numeric data is handled slightly differently though.

As mentioned earlier, any data in a record must be a string; numeric
data must be converted. To do this we use the MKI$ and MKL$
functions. MKI$ converts a short integer into a 2-byte string whereas
MKL$ converts a long integer into a 4-byte string.

The array allkeys$() which needs to be DIMmed before the FOR...NEXT
loop keeps a copy of the area code for when we build the key.

The PUT statement is used to write an entire record to the file. This is
another main difference between random-access and sequential
files: records are written to or read in their entirety whereas there is
no particular limit to how much data you process at one time when
using a sequential file, When the user simply hits [Return] or when
7 entries have been entered, the loop is over.

Page 18 Tutorial

Now type in the following at the end of the program:

for ctr=2 to 8
keystr$=keystr$+allkeys$ (ctr)+mki$ (ctr)
next ctr

lset keyS$=keystr$
put #1,1

close #1
end

This final part of the program to enter the data generates the key to
be used when reading the file. The loop goes through the area codes
that are available, adds the record number until all 7 possible entries
have been processed. Then the string-variable keysirspfs put into the
fielded key$ and the first record is written. The file is then CLOSEd
and the program is over.

Save, compile and run this program and enter some data of your
choice so that you can run the interrogation program...

[Vee hat vays...

This was only the first part, the data entry. Now we have to be able to
interrogate the file to find a directory entry by specifying its area
code.

Save the file creation program, New the program (on the Project
menu) and type in the following:

open "PHONE.DIR" for random as #1 len=28
field #1, 10 as firname$, 10 as lname$, _

2 as councode$, 2 as citycode$, 4 as phonum$
field #1, 28 as key$
get #1,1
buffer$=key$

Save this program as LOOKTELE. BAS.

Tutorial Page 19

This code doesn't look too different from the entry program, except
for the GET statement. This is the counterpart to PUT, it reads an
entire record, in this case the first record of the directory where our
key is located. Also note that we have copied the first record into
buffer$; this is because we want to keep accessing the keys even
though we shall be reading in more records which will corrupt key$.

Now append this to the program:

input "Which area code would you like ", acode
acode$=mki$ (acode)

for srch=1 to 25 step 4
if mid$ (buffer$, srch, 2)=acode$ then
rec=cvi (mid$ (buffer$, srch+2,2))
get #1,rec
print firname$;lname$
print cvi (councode$); cvi(citycode$); cvl (phonum$)
end if
next srch

print "No more";acode;"area codes"
close #1

Here we ask for the area code and change it into a string via MKI$
because the data we get out of the key is also a string.

The search loop then goes through the key record comparing the
area code you entered (converted into a string) with the area codes
stored in the first record (remember this is now in buffer$). These
area codes are stored at positions 1 and 2, 5 and 6, 9 and 10 etc. in
buffer$ with the corresponding record numbers stored at positions 3
and 4, 7 and 8, 11 and 12 etc.

If a match is found for the area code you asked for the record number
is picked up from buffer$ and the record is read in.

The record number was stored after the area code, therefore we have
to get the next two bytes where the record number of the entry is
kept. Then we GET the corresponding entry and print it. The CVI and
CVL functions are the counterparts to MKI$ and MKL$. CVI converts
the value of a two byte string into a short integer; CVL converts four-
byte strings into long integers.

Finally the entry is printed out and then we loop round to search for
more entries associated with this area code until the key record is
exhausted.

Page 20 Tutorial

Save, compile and run the program to check that it works on the data
file you created previously.

This was a somewhat artificial and not necessarily useful example of
file handling but we hope that it clarified how to program random
access files and that it will serve as a basis for extension.

Towers of Hanoi

Firstly, the Towers of Hanoi problem may seem like a rather
complicated subject for an example; however, it is a first-class
example of designing and writing a structured program and the
central solution does not have to be understood in order to
appreciate the power and flexibility of this style of programming,

The Problem |

Imagine you have 3 poles alongside each other, over which you can
place rings of differing sizes. If you have children you may well have
such a set of rings and one pole. Initially, you start off with all the
rings on the leftmost pole in descending sizes upwards like this:

Figure 2.1 Initial Set-up

The object of the puzzle is to move the rings, one at a time, until they
are all on the rightmost pole and still in order of descending sizes
upwards. The only rule is that you can never place a ring onto one
that is smaller.

If you would like to see how this works, double-click on HANOIDEMO
which should be on your backup disk; this shows, slowly, how the
puzzle is solved for the simple case of 3 rings.

'Brain-ache Time

To try and understand how we can solve this problem with a
computer let's look at the even simpler case of just two rings:

Tutorial Page 21

left middle right

Figure 2.2 Hanoi with 2 rings
We can do it in 3 moves:
1. Move the small ring from the left to the middle
2. Move the large ring from the left to the right.
3. Move the small ring from the middle to the right.
One way of looking at this set of moves is that we have moved the
large ring from the left pole (the source) to the right pole (the
destination) using the middle as a work pole.

It's also worth noting that the trivial case of 1 ring just involves
moving it from source to destination.

Ok, what about 3 rings?

left middie right

Figure 2.3 Hanoi with 3 rings

This requires 7 moves and you can see how it's done by double-
clicking on HANOIDEMO on your backup disk.

Page 22 Tutorial

However, we can look at it another way by considering the top 2 rings
on the left pole as being stuck together to form 1 ring. Then, the
solution is just like the case for two rings and involves moving this
combined ring to the middle, then the large ring to the right and
finally the combined ring to the right. Ok, you say, but that's
cheating because you can' t really stick the rings together. No, but it's
a way of looking at the problem to try and simplify it; we can move
any number of rings by considering them to consist of just 2 rings,
the largest ring on the pole and all the others stuck together.

So for 3 rings we consider 1 and 2 stuck together and move them to
the middle and this is just like the 2 ring case in figure 2.2 except that
the source is the left pole, the destination is the middle pole and the
work pole is the right pole. Then we move the large ring from the left
pole to the right pole and finally the two rings on the middle pole (the
source) are moved to the right pole (the destination) via the left pole
(the work pole).

So, any number of rings always comes down to moving just 2 rings
at a time and we have seen how to do this above.

Ok, we're now going to have to take a leap and show you the sub-
program that is the heart of the programming solution to the
Towers of Hanoi:

SUB move(val howmany,val source,val work,val destination)
IF howmany=1 THEN
realmove source,destination

ELSE
move howmany-1, source,destination,work
realmove source,destination
move howmany-1,work,source,destination
END IF

END SUB

What does this do? Let's look at it for 2 rings, you would call this
sub-program like this:

move 2,left,middle, right

i.e. move 2 rings from the left to the right via the middle. howmany is
therefore 2 to start with and so the ELSE clause is actioned; this first
says 'call the sub-program move again to move 1 ring, swapping the
work and destination poles around' i.e. move 1 ring to the middle
pole. So the call to move at line 5 is move 1,left,ight,middle and move
is called within itself! This time howmany=1 and so the ELSE clause is
not actioned but realmove leftmiddle is done instead to actually
move a ring from the left pole to the middle pole.

Tutorial Page 23

Now we come out of this inner call to move and go to line 6 which
says realmove left,right and actually moves the big ring from the left
pole to the right pole. Then line 7 which becomes move
1,middle,left,right and again, move is called within itself.

This inner call does not do the ELSE but does realmove middie,right
moving the ring on the middle pole on top of the ring on the right
pole. The inner call to move is exited and then the outer call is exited,
we've finished!

Can you see how this would work for 3 rings? Each time move is
called to move 1 less ring than before until a ring is actually moved by
realmove; the move sub-program is the core to the Towers of Hanoi
solution and involves a sub-program that calls itself again and again
until something stops the nested calls and goes back up the chain.

A sub-program calling itself is known as recursion and is a very
clever and powerful programming feature but can give you the most
enormous brainache. To keep yourself sane, it's probably best to
believe that the recursive call is going to work!

If the last few paragraphs have been totally wasted on you, don't
despair, it's much easier now we've got move out of the way. Enough
boring theory; on the next page we'll start typing something in to the
computer.

Page 24 Tutorial

Here we go

Double-click on HiSoft BASIC Professional on your work disk and
when the editor is ready type the following, ending each line by
typing [Return]:

'The Towers of Hanol program in HiSoft BASIC Professional

DEFINT a-z
CONST left=1,middle=2,right=3

SUB realmove (val source, val destination)
print "Top ring on pole";source; "moved to pole";destination
END SUB

SUB move(val howmany, val source, val work, val
destination)

IF howmany=1 THEN
realmove source,destination

ELSE
move howmany-1, source,destination,work
realmove source,destination
move howmany-1, work, source,destination
END IF
END SUB

'The actual start
move 3,left,middle,right

Now save this to disk under the name MYHANOI.BAS (use Save on the
Project menu) and then Compile it from the Program menu. Click on
Max Safety for the sake of caution. If you've made any mistakes
typing in the program the compiler will tell you about them and take
you back to the editor. You can then correct them and compile again.
When the program compiles without error and you're back in the
editor, select Run from the Program menu. You should see a list of 7
moves which corresponds to the solution for 3 rings. Check it out
and then hit a key to get back to the editor.

Let's just look at what we've done so far.
defint a-z

all variables are, by default, integers. This ensures speed and
compactness.

Tutorial Page 25

CONSTants

Values that do not change over the program. We'll be adding to these
later.

Sub-program realmove

Just prints out what ring has been moved and where it is moved to.

The parameters are value parameters because we don't want to
modify them.

Sub-program move

The core routine (hands up those who understand it yet!). The
important things to notice are the use of value parameters, it would
be a disaster if the parameters were modified on each call and the fact
that the recursion stops somewhere (when howmany=1), otherwise
the calls to move would go on forever and the routine would
disappear up its own ... pole!

Finally, the main program which simply calls move to move 3 rings.

See how modular the program is, we've spent a lot of time working
out the important sub-program, move, and this has paid off;

although move itself is difficult, the rest of the program is short and
clear.

Now let's extend the program so that we can choose the number of
rings to move. We need an INPUT statement for this but we want to
make sure that sensible values are typed in; it would be silly to move
just 1 ring and too complicated to move more than about 10 (this
upper limit is a bit arbitrary). So, back in the editor, hit AT to get to
the top of file, click at the end of the CONST right=3 line and type:

[Return]
CONST max_rings=10

Remember always to type [Return] at the end of a line.

Now hit AB to get to the end of the program, cursor-up a few times,
click just before the move call in the main program and type:

DO
LOCATE 1,2 'at the top of the screen
INPUT "Number of rings to move: ",num rings
LOOP UNTIL num_rings>1 AND num_rings<=max_rings

Page 26 Tutorial

Now click after the 3 in move 3,left,middle,right, hit [Backspace] and
type num rings.

Save your program and hit Ax to compile and run the program (this
is the same as selecting Run from the Program menu); this compiles
and, if successful, runs it automatically after asking you to hit a key.
You should be asked Number of rings to move: ?. Firstly answer 1 and
then 11 to check that it rejects these answers. Then answer with a
sensible number to see if the moves are then made.

Well, that's the Towers of Hanoi solution.
It's not very pretty, though; perhaps we could make look a little more

exciting if we added some graphics and showed the rings actually
moving on the screen. How on earth are we going to do that?

|Adding Graphics

This needs some thought first. The program we have at the moment
just tells us which ring to move from pole to pole and we use our
intelligence and knowledge of the rules to (mentally) pick up the top
ring and move it on top of any rings that are on the destination pole.
As we have coded the program, the computer has no idea of the size
or the position of the rings and needs to take these into account.

It's a good job we thought about this now rather than later; in fact we
should have thought about it before because it's going to involve a
major change to realmove.

However, we've been foresightful enough to make realmove a sub-
program which means it is fairly easy to change.

So, we are going to make realmove move a ring from one pole to
another; to show the ring moving on a trajectory between the poles
would be a little difficult so we'll settle for something simpler. We'll
define moving a ring from source to destination as meaning:

delete the ring on pole source
draw the ring on pole destination

We are going to need another sub-program that 'draws' rings at a
particular point on the screen of a particular size, either real rings or
blank (deleted) rings. realmove can then call this to delete a ring and
then call it again to draw the moved ring; but how are we going to
draw the ring?

Tutorial Page 27

The LINE statement comes to our rescue. This allows us to draw a box
by using the following syntax:

LINE (x1,y1) - STEP (x2,y2),color,bf

This draws a filled box (because of the bf) with opposite corners
(x1.y1) and (x2.y2). The box will be filled with the ink color specified by
color so we can use a color of O to delete the box.

Right, so we have a sub-program called, say, drawring that
draws/deletes rings for us. We must tell it on which pole to draw the
ring, the width of the ring, what number ring we are drawing (i.e. its
position up the pole, number 1 ring will be the bottom ring) and what
color to fill the box with.

We're getting on but before we start attacking the keyboard we'd
better think a little about what things are going to look like on the
screen and how we're going to hold information about the sizes of the
rings, where they are etc.

The first thing to do is work out how we are going to store the
position and size of the rings so that we can draw them on the screen
easily. It seems sensible to hold the information in a two-
dimensional array of 3 by num_rings (because there are 3 poles and
num_rings rings to go on them) with each element of the array
holding the width of the ring that is on the corresponding pole at the
moment. Let's call this array poles().

How wide is the widest ring? Well, the Amiga's screen resolution is
640 wide by 200 high in medium resolution and we have 3 poles
across the screen so the widest ring could be 200 pixels wide (we'll
call this max_width), leaving us 10 pixels between the widest rings
(3*200=600, leaving 40 pixels for 4 gaps). If we are having a
maximum of max_rings rings then the next ring width can be

max_width-max_width\max_rings,

followed by

max_width-2*max_width\max_rings etc.

Ok so far? According to the above, the centre of each pole will start at

110, 320 and 530 pixels across the screen respectively. Call these
polel, pole2 and pole3.

Page 28 Tutorial

¢

What about the height of each ring? The screen is 200 (call this
full_height) pixels high and (0,0) starts at the top left of the screen
and maybe we should leave a gap of 50 pixels top and bottom (call
this gap space) leaving full_height-2*space pixels to draw max_rings
rings, so each ring can be (full_height-2*space)\max_rings (\ means
integer division) pixels high. Actually, we'll open a window which will
have a title bar which will reduce the effective drawing size but this
won't matter much to us; at least we thought about it.

Let's summarize our new identifiers:

poles() 2-dimensional array holding width of rings on each
pole

polel

pole2 the centre of each pole across the screen, constants

poled

space the gap top and bottom, constant

max_width the maximum width of a ring, constant
gap the gap between the widest rings, constant
full_height the height of the screen in pixels

Let's have a go at writing the drawring routine. First of all we'll define
the constants, so go to the top of your program (AT), then click after
CONST max_rings=10 and type:

[Return]
CONST polel=110,pole2=320,pole3=530
CONST space=50,max width=200,gap=10

CONST full height=200

Tutorial Page 29

Now type some more at the beginning of the SUB reaimove... line:

‘draw or erase a ring
SUB drawring(which pole,start, size, type)

'x position of start of ring is the pole centre minus
'half the width of the ring

SELECT CASE which pole
CASE=1
xstart=polel-size\2
CASE=2
xstart=pole2-size\2
CASE=3
xstart=pole3-size\2
END SELECT

'y position of start of ring
ystart=full height-space-start*ring height

'draw ring either filled with white or pattern
IF type=0 THEN

LINE (xstart, ystart)-STEP(size, ring height-2),0,bf
ELSE

LINE (xstart, ystart)-STEP(size, ring height-2),,bf
END IF

END SUB

See how we've used the SELECT statement to work out the x co-
ordinate of the start of the ring, this is much faster and simpler than
using a complicated formula to work it out.

One problem; we've used ring_height which is not worked out in this
sub-program, it is going to be defined elsewhere (worked out from
how many rings there are). Such is the power of HiSoft BASIC
Professional that ring_height will not be available to drawring unless
we declare it as SHARED by the sub-program.

Also, the variables xstart and ystart will be used only by this sub-
program and are therefore local to it and can be declared as STATIC
(local). To effect both these changes, click before 'x position of start of
... and enter:

SHARED ring height
STATIC xstart,ystart
[Return]

Now let's test out this sub-program.

Page 30 Tutorial

First, we need to open a window and call drawring with some suitable
parameters. Go to the bottom of the program (4B), page-up (press
[shift]-1), click at the end of the LOOP UNTIL... line and type:

[Return]
ring_height=(full height-space*2)\max_ rings

WINDOW (1), "The Towers of Hanol in HiSoft BASIC
Professional"

drawring 3,5,100,2

The above defines ring_height in terms of max_rings, opens a window
with a title bar with some text in it.

Next we call drawring to draw a ring on pole 3, at position 5 (1 is the
bottom ring), of width 100 and with a fill pattern. To make sure we
don't call move while we are testing drawring, click in front of the
move num_rings,left,middle,right line and type a single quote () to
comment out the line.

Let's try it out. Type AX to compile and run, answer any valid
number when it asks you Number of rings to move and you should
see a ring appear on the screen, if not, check you have typed
everything in correctly.

You should now be cautious and save the program before going on.

The next task on the list is to use drawring to set up all the rings on
pole 1; to do this we must initialise the poles array to hold the widths
of all the rings on pole 1 and then call drawring repeatedly to draw
them on the screen.

Click at the beginning of the drawring 3,5,100,2 line and type [ctrl]-
Y to delete the line and then enter:

DIM poles (3, num rings)
'initialise first pole

FOR i=1 TO num rings
poles(l,i)=max width-(i-1)* (max width\num rings)
NEXT i

'draw first pole
FOR i=1 TO num_rings

drawring 1,1,poles(1,1),2
NEXT i

Tutorial Page 31

Save the program, compile and run it (4x). Type in how many rings
you want and it should draw this many on the first pole.

[Nearly there

Well, the last thing to do is to re-write the realmove sub-program so
that it moves a ring from source to destination by deleting the source
ring and creating one on the destination pole. This should just
involve working out the width of the ring to move, where it is on the
pole and then calling drawring twice, once to erase it and once to re-
draw it.

Has a problem occurred to you?

How do we know where the ring is on the pole? When we, as
sentient beings(!), did it we Jjust knew to take the top
ring from the source pole but how does the program know
which is the top ring? We're going to have to tell it..
which means another array called, say, highest with 3
dimensions, one for each pole, that holds the current
highest ring for that pole. Rings are numbered from 1
upwards, remember,So, assuming ?ﬂghest has been set up,
let's type in realmove; type AT AF, then PRINT "Top ring
[Return] to get to the realmove sub-program and enter:

[Ctrl]-Y

STATIC ring width,ystart
'get the width of the ring to move
ring_width=poles (source, highest (source))

‘erase source ring
drawring source, highest (source), ring width,0

'‘erase ring from array
poles (source, highest (source))=0
DECR highest (source}

‘add ring to destination
INCR highest (destination)
poles(destination, highest (destination))=ring_width

'draw destination ring in appropriate style pattern
style highest (destination)
drawring destination, highest (destination),ring width,2

Note how we used INCR and DECR to add and subtract 1 to and from
the highest ring on the destination and source poles respectively.

Page 32 Tutorial

000°

Ok, let's test it. No...wait, we've forgotten about highest; click before
the 'initialise first pole comment and enter

DIM highest (3)

highest (1)=num rings
[Return]

Go to the bottom of the program and page-up, click in front of 'move
num_rings... and hit [Del] to get rid of the single-quote and reinstate
move. Now type Ac to compile and click Variable Checks Yes and
then press [Return].

Oops... we've got a compiler error (Undefined identifier POLES%),
why? Answer N to the Continue? question and we will be placed on
the rogue line. You'll see that this is in the realmove sub-program
and is on the first line in the sub-program that references poles. But
we declared poles as a two-dimensional array in the outer program,
why is the compiler complaining?

The answer is that just declaring an array does not make it available
to all sub-programs. You either have to declare the array as DIM
SHARED to make it available to all sub-programs or declare it SHARED
in the sub-program in which you want to use it. We'd better share
highest as well since realmove uses it.

So, move the cursor up until it is in front of the STATIC ring_width...
line and type:

SHARED poles (2),highest (3)
[Return]

The 2 in poles(2) means this array has 2 dimensions.

Save your program, compile and run it. It should now compile
correctly and prompt you for a number of rings. Enter 10 and, lo and
behold, it works!

Tutorial Page 33

lJust when you thought it was safe...

|

Just to keep you on your toes, we have a couple of optional problems
tosetyou ...

L The rings move very quickly don't they? Write a Delay sub-
program to slow down the movement of the rings; the call to
Delay only needs to be added in two places.

2. This is harder. Write the code to show the rings moving from
‘pole’ to 'pole’; the routine drawring is already there for you -
you've just got to work out where to draw the rings moving!

Well, that's the Towers of Hanoi finished. In fact, we've written it so
well (and with modesty!) that, with just one change, we can move up
to 42 rings (then the stack runs outl). All you have to do is to change
the value of the constant max_rings. Try it and see... (but don't try
anything much higher than 16, it begins to take rather a long timel).

That's the end of the tutorial section. If you are at all confused please
go back, read through it again, try out the examples, referring to the
Command Reference and Concepts chapters as often as you like.

We hope you enjoy using HiSoft BASIC Professional.

Page 34 Tutorial

0000000000000 00000000000000000000000C0CCKCCCS

Chapter 3
How to use HiSoft BASIC
Professional

Infroduction

To enter and compile your programs you need an editor of some sort
and a compiler. HiSoft BASIC Professional combines both of these
functions together in one integrated program, giving an Intuition-
driven full-screen editor and a fast, full-specification compiler. It also
allows you to run your compiled programs directly from memory
without having to quit the program or do a disk access. The fact that
all these features are combined in one program means that
correcting errors and making changes is as fast as possible without
the need for slow disk accesses and other programs.

For users that do not like this type of interactive environment or do
not want to use our editor, it is perfectly possible to run the compiler
from a CLI (Command Line Interface) - see Using HiSoft BASIC
Professional from the CLl in Appendix A. This chapter details the use
of the editor and how to compile programs - it does not detail the
language itself, which is covered in the following chapter.

\What's on the Disks

HiSoft BASIC Professional is supplied on two disks. Disk 1 contains
all you need to start writing and running programs whilst Disk 2
contains sample program source and additional programs.

[Disk 1

Disk 1 is based on a standard Workbench 1.3 disk but with the
Utilities and Fonts directories removed and these additional files:

HiSoft BASIC Professional the integrated editor and compiler

HB.Compiler the compiler itself (required by editor)
HANOIDEMO example program used in tutorial
hisoftbasic library the library file for the compiler (in 1ibs}
Using the Package Page 35

[Disk 2 |
README contains latest details not in manual
CALC.BAS BYTE Calc benchmark
DEMO.BAS Demonstration program
DUMP.BAS Hex and ASCII file dumper
HANOI.BAS Towers of Hanoi
PCWALL.BAS all the old PCW magazine benchmarks
SIEVE.BAS BYTE Sieve benchmark

If you wish to use your own Workbench disk configuration, please
note that in addition to the hisoftbasic library the compiler also
needs the mathieeedoubbas and mathieeedoubtrans libraries, which
may be found on disk 1 and copied via the CLI. The arp library will
also prove useful when using the editor.

To run HiSoft BASIC Professional, double click on the HiSoft BASIC
Professional icon from the Workbench. When it has loaded a menu
bar will appear and an empty window will open, ready for you to
enter and compile your programs.

The Editor

At the risk of over-simplifying things ... a text editor is a program
which allows you to enter and alter lines of text into memory, store
them on disk, and load them back again. There are two types of text
editors: line editors, which treat each line separately and are often
very tricky to use, and screen editors, which display your text a
screen at a time. These are normally much easier to use.

The editor section of HiSoft BASIC Professional is a screen editor
which allows you to enter and edit text and save and load from disk,
as you would expect. It also lets you print some or all of your text,
search and replace text patterns and much more. It is Intuition-
based, which means it uses all the user-friendly features of the
Amiga that you have become familiar with on your computer such as
windows, menus and mice. However, if you're a die-hard used to the
hostile world of computers before the advent of WIMPs, you'll be
pleased to know you can do practically everything you'll want to do
from the keyboard without having to touch a mouse.The editor is
'RAM-based’, which means that the file you are editing stays in
memory for the whole time, so you don't have to wait while your disk
grinds away loading different sections of the file as you edit. As all
editing operations, including things like searching, are RAM-based
they act blindingly quickly.

Page 36 Using the Package

When you have typed in your programs it is not much use if you are
unable to save them to disk, so the editor has a comprehensive range
of save and load options, allowing you to save all or part of the text
and to load other files into the middle of the current one, for example.

To get things to happen in the editor, there are various methods
available to you. Features may be accessed in one or more of the
following ways:

* Using a single key, such as a Function or cursor key;

e Clicking on a menu item, such as Save;

e Using a menu shortcut, by holding down the Right Amiga
key (subsequently referred to as A) and pressing another
key e.g. A F for Find;

e Using the Control key (subsequently referred to as Ctrl) in
conjunction with another, such as Cirl-A for cursor word left;

e Clicking on the screen.

The menu shortcuts have been chosen to be easy and obvious to
remember, the cursor key functions are based on those in the
AmigaBASIC editor while the Ctl commands are based on those used
in WordStar, and many other compatible editors since.

/A Few Words about Requesters

The editor makes extensive use of Requesters, so it is worth
recapping how to use them, particularly for entering text. The
editor's requesters contain string gadgets and buttons.

String gadgets enable to to enter and edit text, and are depicted by a
box containing the text, and with a block indicating the cursor
position. Characters may be typed in and corrected using the
Backspace, Del and cursor keys. You can clear the whole edit field by
pressing A X. You can move the cursor to the beginning by pressing
Shift «, or to the end by pressing Shift ». If there is more than one
editable text field in a requester, you can move between them by
clicking near them with the mouse.

Buttons may be clicked-on with the mouse and cause the requester
to go away. Usually there is a default button, shown by having a
double border. Pressing Return on the keyboard is equivalent to
clicking on the default button, so long as a string gadget is active.

Some requesters allow only a limited range of characters to be typed
into them - such as the Goto Line requester.

Using the Package Page 37

[The File Requester R

The File Requester is used to select file names for the disk input and
output facilities of the editor. In its simplest form all you need to do is
to click on the file you require and then on the OK button. To cancel
the operation click on the Cancel button. At the top of Requester is
the drawer specification, this determines which disk and sub-
directory is displayed and can include wildcards, for example the
specification

dfl:examples/#?.bas
will display all files ending in .bas.

If you edit this specification, pressing the Return key will cause the
directory to be read and displayed in the main part of the requester.
Files may be selected by clicking on them then pressing Return or
clicking on OK. The file list shows sub-directories with a (dir) prefix
and the scroll bar may be used to navigate the file list. Files may be
selected or the requester Cancelled while the directory is still being
read! When initially invoked, only the first few files will be displayed.
To update the file list, click on the slider to the right of the filename
list.

You can obtain a list of all devices (e.g. DFO:, DF1:) by right-clicking
within the file requester.

m This File Requester uses the ARP library by Charlie
Heath. If this library is not found then a simple string gadget will be
used in its place.

[Entering text and Moving the cursor]

Having loaded HiSoft BASIC Professional, you will be presented with
an empty window with a status line at the top and a orange block,
which is the cursor, in the top left-hand corner.

The status line contains information about the cursor position in the
form of Line and Column offsets as well as the number of bytes of
memory which are free to store your text. Initially this is displayed
as 9980, as the default text size is 10000 bytes. You may change this
default if you wish, together with various other options, by selecting
Preferences, described later. The 'missing' 20 bytes are used by the
editor for internal information.

Page 38 Using the Package

The rest of the status line area is used for error messages, which will
usually be accompanied by a 'ping’ noise to alert you. Any message
that gets printed will be removed when subsequently you press a

key.

To enter text, you type on the keyboard. As you press a key it will be
shown on the screen and the cursor will be advanced along the line. If
you are a very good typist you may be able to type faster than the
editor can re-display the line; if so, don't worry, as the program will
not lose the keystrokes and will catch up when you pause. At the end
of each line you press the Return key (or the Enter key on the numeric
pad) to start the next line. You can correct your mistakes by pressing
the Backspace key, which deletes the character to the left of the
cursor, or the Delete key, which removes the character the cursor is
over.

The main advantage of a computer editor as opposed to a normal
typewriter is its ability to edit things you typed a long time ago. The
editor's large range of options allow complete freedom to move
around your text at will.

Cursor keys

To move the cursor around the text to correct errors or enter new
characters, you use the cursor keys, labelled « - 1 and !. If you move
the cursor past the right-hand end of the line this won't add
anything to your text, but if you try to type some text at that point
the editor will automatically add the text to the real end of the line. If
you type in long lines the window display will scroll sideways if
required.

If you cursor up at the top of a window the display will either scroll
down if there is a previous line, or print the message Top of file in the
status line. Similarly if you cursor down off the bottom of the window
the display will either scroll up if there is a following line, or print the
message End of file.

For those of you used to WordStar, the keys Ctrl-S, Ctrl-D, Ctrl-E and
Ctrl-X work in the same way as the cursor keys.

To move immediately to the start of the current line, press Ctrl «,
and to move to the end of the current line press ctrl -.

To move the cursor a word to the left, press shift « and to move a
word to the right press Shift 5. You cannot move past the end of a line
with Shiftf 5. A word is defined as anything surrounded by a space, a
tab or a start or end of line. The keys Cirl-A and Ctrl-F also move the
cursor left and right on a word basis.

Using the Package Page 39

To move the cursor a page up, press Ctrl-R or Shift . To move the
cursor a page down, press Ctrl-C or Shift {.

If you want to move the cursor to a specific position on the screen

you may move the mouse pointer to the required place and click
(There is no WordStar equivalent for this feature!).

Tab key

The Tab key inserts a special character (ASCII code 9) into the buffer,
which on the screen looks like a number of spaces, but is rather
different. Pressing Tab aligns the cursor onto the next 'multiple of 8'
column, so if you press it at the start of a line (column 1) the cursor
moves to the next multiple of 8, +1, which is column 9. Tabs are very
useful indeed for making items line up vertically and its main use in
HiSoft BASIC Professional is for such things as indenting
structured program lines. When you delete a tab the line closes up as
if a number of spaces had been removed. The advantage of tabs is
that they take up only 1 byte of memory, but can show on screen as
many more. You can change the tab size before or after loading HiSoft
BASIC Professional; to change the default use the Preferences
command described shortly.

Backspace key

The Backspace key removes the character to the left of the cursor. If
you backspace at the very beginning of a line it will remove the
'invisible' carriage return and join the line to the end of the previous
line. Backspacing when the cursor is past the end of the line will
delete the last character on the line, unless the line is empty in which
case it will re-position the cursor on the left of the screen.

Delete key

The Delete key removes the character under the cursor and has no
effect if the cursor is past the end of the current line.

Goto a particular line

To move the cursor to a specific line in the text, click on Goto line...
from the Optlons menu, or press AG. A requester will appear,
allowing you to enter the required line number. Press Retumn or click
in the OK button to go to the line or click on Cancel to abort the
operation. After clicking on OK the cursor will move to the specified
line, re-displaying if necessary, or give the error End of file if the line
doesn't exist.

Page 40 Using the Package

Go to top of file

To move to the top of the text, click on Goto Top from the Options
menu, or press AT. The screen will be re-drawn if required starting
from line 1.

Go to end of file

To move the cursor to the start of the very last line of the text, click
on Goto Bottom, or press AB.

'Quitting HiSoft BASIC Professional

To leave HiSoft BASIC Professional and remove it from memory, click
on Quit from the Project menu, or press AQ. If changes have been
made to the text which have not been saved to disk, an alert box will
appear asking for confirmation. Clicking on Cancel will return you
to the editor, while clicking on OK will discard the changes and
return you to the CLI or Workbench.

IDeleting text

Delete line

The current line can be deleted from the text by pressing Ctrl-Y.

Delete to end of line

The text from the cursor position to the end of the current line can be
deleted by pressing Ctrl-Q. (This is equivalent to the WordStar
sequence Chl-QYY).

UnDelete Line

When a line is deleted using either of the above commands it is
preserved in an internal buffer, and can be re-inserted into the text
by pressing Ctrl-U. This can be done as many times as required,
particularly useful for repeating similar lines or swapping individual
lines over.

Using the Package Page 41

Delete all the text

To clear out the current text, click on New from the Project menu. If
you have made any changes to the text that have not been saved onto
disk, a confirmation is required and the requisite alert box will
appear. Clicking on OK will delete the text, or Cancel will abort the
operation.

[Disk Operations

It is no use being able to type in text if you are unable to save it
anywhere permanently, or load it back subsequently, so the editor
has a comprehensive set of features to read and write to disk.

Saving Text

To save the text you are currently editing, click on Save As from the
Project menu, or press AS. The File Requester (see earlier) will
appear, allowing you to select a suitable disk and filename. Clicking
OK or pressing Return will then save the file onto the disk. If an error
occurs a requester will appear showing a suitable error message or
an AmigaDOS error number, the exact meaning of which can be
found in Appendix B.

If you click on Cancel the text will not be saved. Normally if a file
exists with the same name it will be deleted and replaced with the
new version, but if Backups are selected from the Preferences
options then any existing file will be renamed with the extension
.BAK (deleting any existing . BaK file) before the new version is saved.

Save

Save on the Project menu. If you have already done a Save As (or a
Load), HiSoft BASIC Professional will remember the name of the file
and display it in the title bar of the window. If you want to save it
without having to bother with the file selector, you can click on Save
on the Project menu and it will use the old name and save it as above.
If you try to save without having previously specified a filename it will
present you with the File Requestor, as in Save As.

Page 42 Using the Package

Loading Text

To load in a new text file, click on Load from the Project menu, or
press AL. If you have made any changes that have not been saved, a
confirmation will be required. The File Requester will appear, allowing
you to specify the disk and filename. Assuming you do not Cancel,
the editor will attempt to load the file. If it will fit, the file is loaded into
memory and the window is re-drawn. If it will not fit an alert box will
appear warning you, and you should use Preferences to make the
edit buffer size larger, then try to load it again.

Note

- The editor only understands ASCII files; tokenised files,
such as those produced by AmigaBASIC have to be de-tokenised
first. See Appendix C for details of how to do this.

Inserting Text

If you want to read a file from disk and insert it at the current
position in your text click on Insert File from the Project menu, or
press Al. The File Requester will appear and assuming that you do
not cancel, the file will be read from the disk and inserted, memory
permitting.

Directory

This command (AO) lets you change the current directory that you
are using. This is similar to using the CHDIR command in direct mode
in AmigaBASIC.

|Searching and Replacing Text

To find a particular section of text, click on Find from the Search
menu, or press AF. A requester will appear, allowing you to enter the
Find and Replace strings. If you click on Cancel no action will be
taken. If you click Next (or press Return) the search will start
forwards from the current cursor position. Clicking on Previous will
start the search backwards. If you do not wish to replace (i.e. simply
find things) leave the Replace string empty.

Using the Package Page 43

If the search was successful, the screen will be re-drawn at that point
with the cursor positioned at the start of the string. If the search
string could not be found, the message Not found will appear in the
status area and the cursor will remain unmoved. By default the
search is always case-independent, so for example if you enter the
search string as test you could find the words TEST, Test and tfest. If
you click on the UPPER & lower case Different button the search will
be case-dependent.

To find the next occurrence of the string click on Find Next from the

Search menu, or press AN. The search starts at the position just past
the cursor.

To search for the previous occurrence of the string click on Find
Previous from the Search menu, or press Ap. The search starts at the
position just before the cursor.

Having found an occurrence of the required text, it can be replaced
with the Replace string by clicking on Replace from the Search
menu, or by pressing AR. Having replaced it, the editor will then
search for the next occurrence.

If you wish to replace every occurrence of the find string with the
replace string from the cursor position onwards, click on Replace
All from the Search menu. During the global replace the Esc key can
be used to abort and the status area will show how many
replacements were made. There is deliberately no keyboard
equivalent for this to prevent it being chosen accidentally.

To search and replace Tab characters just press Tab when typing in
the requester. Other control characters may be searched for by
typing them in directly (Ctrl-G for example). However do not use this
for CR (Ctrl-M) and LF (Ctri-J) characters.

[Block Commands |

Marking a block

The start of a block is marked by moving the cursor to the required
place and pressing key F1. The end of a block is marked by moving
the cursor and pressing key F2. The start and end of a block do not
have to be marked in a specific order - if it is more convenient you
may mark the end of the block first.

Page 44 Using the Package

Saving a block

Once a block has been marked, it can be saved by pressing key F3. If
no block is marked, the message What blocks! will appear. If the start
of the block is textually after its end the message Invalid block! will
appear. Both errors abort the command. Assuming a valid block has
been marked, the File Requester will appear, allowing you to select a
suitable disk and filename. If you save the block with a name that
already exists the old version will be overwritten - no backups are
made with this command.

Copying a block

A marked block may be copied, memory permitting, to another part
of the text by moving the cursor to where you want the block copied
and pressing key F4. If you try to copy a block into a part of itself, the
message Invalid block will appear and the copy will be aborted.

Deleting a block

A marked block may be deleted from the text by pressing Shift-F3 or
Shift-F5. The shift key is deliberately required to prevent it being used
accidentally. A deleted block is remembered, memory permitting, in
the block buffer, for later use.

Copy block to block buffer

The current marked block may be copied to the block buffer, memory
permitting, by pressing Shift-F4. This can be very useful for moving
blocks of text between different files by loading the first, marking a
block, copying it to the block buffer then loading the other file and
pasting the block buffer into it.

Pasting a block

A block in the block buffer may be pasted at the current cursor
position by pressing F5.

m The block buffer will be lost if the edit buffer size is
changed or a compile occurs.

Using the Package Page 45

Printing a block

A marked block may be sent to the printer by clicking on Print Block
from the Project menu, or by pressing AW. A simple requester will
appear asking for the name of the printer, which defaults to PRT:,
and clicking on OK will print the block. Of course the name can be any
valid AmigaDOS device, so you could 'print' the block to disk if
required. It is different to Save Block in that tabs are expanded to
spaces.

If you try to Print when no block is marked at all then the whole file
will be printed.

[Miscellaneous Commands |

Help Screen

The key equivalents for the commands not found in menus can be
seen by pressing the Help key, or AH. A requester will appear
showing the function keys, as well as the free memory left for the
system. The number in brackets shows the size of the largest free
block of system memory.

Preferences

Selecting Preferences from the Options menu will produce a
requester allowing you to change several editor settings:

Tab setting

By default, the tab setting is 8, but this may be changed to any value
from 2 to 16.

Text Buffer

By default the text buffer size is 10000 bytes, but this can be changed
from 4000 to 999000 bytes. This determines the largest file size that
can be loaded and edited. Care should be taken to leave sufficient
room in memory for compilations - pressing the Help key displays
free system memory, and for compilations this should always be at
least 100k bytes. Changing the editor workspace size will cause any
text you are currently editing to be lost, so a confirmation is required
if it has not been saved.

Page 46 Using the Package

Backups

By default the editor does not make backups of programs when you
save them, but this can be turned on by clicking on the Yes button.
Backup files do not have any icon associated with them.

Auto Indent

It can be particularly useful when editing programs to indent
subsequent lines from the left, so the editor supports an auto-indent
mode. When active, an indent is added to the start of each new line
created when you press Return. The contents of the indent of the new
line is taken from the white space (i.e. tabs and/or spaces) at the
start of the previous line. Click on YES if you want this feature.

Auto full-size

By default, the editor will not use the entire screen display for
compatibility with US Amigas. Click on YES in the Preferences
requester to make the editor use a large a window as possible. We
recommend this be avoided by A500 users with PAL screens as this
uses a surprising amount of extra memory.

Saving Preferences

If you click on the Cancel button any changes you make will be
ignored. If you click on the OK button the changes specified will
remain in force until you quit the editor. If you would like the
configuration made permanent then click on the Save button, which
will create the file HBASIC.INF on your disk. Next time you run HiSoft
BASIC Professional the configuration will be read from that file.

In addition to saving the editor configuration the current program
buffer size, shown in the compilation options requestor, is also
saved.

Using the Package Page 47

[Compiling and Running Programs |

All compilation and run options can be found on the Program menu.

Compiling

To set all compilation options and compile the program you are
currently editing click on Compile from the Program menu or press
AC, and a large requester will appear allowing you to set all the
options.

The exact differences between most of the code generating options
are explained in more detail in Appendix A. The only option covered
here is Compile to. HiSoft BASIC Professional can compile to disk or
to memory - compiling to memory is much faster and ideal for trying
things out quickly, while compiling to disk means you can create
stand-alone, double-clickable programs without any need for the
compiler to be present.

If you haven't saved your program when you compile to disk, the file
will have the name NONAME on the disk.

The file produced on the disk can then be run from the Workbench
directly by double-clicking on it like any other program. It does not
need any of the compiler or its library file to be present - it is
completely self contained.

After you click on OK or press Return the compilation process will
start, described more fully in the next chapter. At the end of the
compilation the program will wait for a key press, allowing you to
read any messages produced, before returning you to the editor. If
there were any compilation errors the editor will go to the first
erroneous line and display the error message in the status bar.

Subsequent errors may be investigated by pressing AJ.

m If you compile or run a program on a machine with less
than 200k free (this normally means you have less than 1M of RAM
in total), the editor's window is reduced to its minimum size, to save
memory. It will return to its full size after the compilation or when
your program finishes

Page 48 Using the Package

Running Programs

If you click on Run from the Program menu or press AX you can then
run a program previously compiled into memory. When your
compiled program finishes it will normally wait for a key then return
you to the editor. If you have made any changes to your program
since the last compilation, then an automatic compilation will occur,
before the program is run. If there are any compilation errors then it
is not possible to run the program. When a compilation occurs as a
result of a Run command it uses the current options as set by the last
Compile command.

Programs compiled to memory then run using this command work
in a very similar way to when they are compiled to disk and double-
clicked, though there is one important difference - they have much
less memory available when they run, as an editor and compiler are
sharing the memory space with them.

[Jump to Error

During a compilation any errors that occur are remembered, and can
be recalled from the editor. Clicking on Jump to error from the
Program menu, or pressing AJ will move the cursor to the next line in
your program which has an error, and display the message in the
status line of the window. You can step to the next one by pressing
AJ again, and so on, letting you correct errors quickly and easily. If
there are no further errors when you select this option the message
No more errors will appear, or if there are no errors at all the message
What errors! will appear.

Window Usage

The window used by the editor works like all other Intuition
windows, so you can move it around by using the Move bar on the top
of it, you can change its size by dragging on the size gadget. Clicking
on the Close gadget is equivalent to choosing Quit from the Project
menu.

Using the Package Page 49

Automatic Double Clicking

HiSoft BASIC Professional will be loaded automatically whenever a
source file is double-clicked from the Workbench, so long as its
Default Tool setting under the Info item on the Workbench menu is
set correctly.

Page 50 Using the Package

Chapter 4

Concepts

This chapter describes the technical details of the HiSoft BASIC
Professional language, together with some of its more advanced
features. It is intended for users who already have a good
understanding of the BASIC language and want to get to grips with
HiSoft BASIC Professional quickly. If you are new to BASIC please
read the tutorial first.

Character Set

HiSoft BASIC Professional uses plain ASCII characters in its input
files. The following characters have special meanings:

a-z, A-Z The letters, which are used in reserved words and the
user's variable names, labels and sub-program names.
Lower and upper case are treated as the same in variable
and reserved word definitions so that THEN, then and
Then are all the same reserved word.

E.e,D,d are also used for exponents in numbers.

0-9 The digits, which are used in numbers and can also be
used in names as long as they are not the first character.

The full stop or period, which is used as the decimal point
in numbers and can also be used in names as long as it is
not the first character.

% The percentage sign, which is used to indicate that a
variable is a 16 bit integer i.e. whose values must be in the
range -32768 to 32767.

& The ampersand, which is used to indicate that variables
are long integers i.e. whose values must be in the range -
2731 to 2731-1. Also used to introduce hexadecimal, octal
and binary constants.

! The exclamation mark, which is used to indicate that a
variable is a single-precision floating point number.

Concepts Page 51

9)

?

The hash or number sign, which is used to indicate that a
variable is a double precision floating point number and
also used to indicate that certain input/output
operations are to be directed to channels rather than the
screen (e.g. PRINT #).

used to indicate string variables.

The underline character, which can be used in variables
after the first character assuming the underline (U) flag
has not been turned off. If it appears at the start of a
symbol or the underline (U) has been disabled then it
indicates the rest of the line is to be ignored and that the
following line is to be considered part of the current one.

The quotation mark or double quote which is used to
delimit string literals.

The apostrophe or single quote which is used to indicate
that the rest of this line is to be regarded as a comment.

The parentheses or round brackets, which are used to
enclose function arguments, over-ride the priority of
operators and indicate arrays.

the basic arithmetic operators.

assignment operator and equality operator.

less than and greater than comparison operators.

exponentiation operator.

The back-slash character, which is used as the integer
division operator.

comma.
semi-colon.

used as an abbreviation for PRINT.

Other characters with ASCII values lower than 32 are treated as
white space, and ignored so you may, for example, include form-feed
(chr$(12)) characters to give a new page on your printer when listed.

Other characters may be used in strings, but otherwise will generate
a warning and will be ignored.

Page 52

Concepts

Program lines and labels

Program lines consist of an optional line number or label, one or
more statements separated by colons and an optional comment,
which starts with an apostrophe or single quote.

Line numbers may be any number between 1 and 65529 inclusive.
(65529 may seem a strange number, it is the maximum allowed by
Microsoft BASIC).

Line labels consist of any valid variable name that is not used as a
variable or a sub-program and labels are followed by a colon. There is
no limit to the number of characters in a line label but lower- and
upper-case letters are treated as the same and the characters must
not be a reserved word. Thus the following line labels are allowed:

Label9999:
A.very.long.label.that.causes.problems.to.other.BASICs:
Hello:

The following line labels are the same:

Start:

START:

start:

Line numbers and labels may be preceded by white space. White
space is not required after the last digit or colon. Line numbers may
not contain spaces.

Note: For compatibility with other BASICs we recommend that you
do not use full stops (.) or underlines (_) in labels and keep them to
less than 40 characters.

Line number 0 is not allowed because it would be confused when
using ON ERROR GOTO 0 which does not mean go to line 0 if an error

occurs.

In general we do not recommend the use of line numbers since line
labels are much more readable. The exception to this is when using
ERL when the use of line numbers is essential.

Concepts Page 53

Most of the time you do not need to use line numbers or line labels
because HiSoft BASIC Professional has such a rich set of structured
statements. (Much better than Pascal and even more flexible than C
and Modula 2.)

You may have many statements per line provided each is separated
by a colon.

HiSoft BASIC Professional has an extension to call sub-programs
without the CALL keyword. However you cannot do this if the sub-
program has no parameters and is the first statement of a multi-
statement line. For example, if you have:

SUB john STATIC

PRINT "John";

END SUB

then

john

PRINT " Smith"

will print

John Smith

as will

call john: print " Smith"

However

john: print " Smith"

is wrong because the john: could be a label definition; normally the
compiler will warn you on the parsing phase if you make this error.

Page 54 Concepts

This problem does not apply if the sub-program has a parameter, for
example:

SUB "john(para$) static

PRINT "“John ";para$;

END SUB

john "David": print " Smith"

is fine because it cannot be mistaken for a label.

If an apostrophe or single quote () appears on a line then the rest of
the line is treated as comment and ignored. The only exception to
this is DATA statements which treat the apostrophe as part of the
data. If you want a comment on such a line precede it with a colon;
this will terminate the DATA statement.

Program lines may be any length theoretically, but it is generally a
good idea to keep them less than 80 characters so that the whole line
is displayed at once. If you need a line that is significantly longer
than this then the chances are that the line is more complicated
than it should be as far as ease of understanding is concerned. The
exception to this is the FIELD statement where for large records you
need many more than 80 characters.

To get round this the underline character () may be used to cause
lines to be continued on the next physical line. Anything after the
underline is ignored. For example:

FIELD #3,20 AS name$, "surname only
5 AS initials$,
50 AS street$, _' include name or number here
20 AS town$,
20 AS county$, ' or state if applicable

20 AS country$

which would be much more readable than the one-line equivalent
where you would also have to leave out the comments.

Normally HiSoft BASIC Professional allows underlines in variable
names, unlike traditional BASICs. Underlines are treated as
continuation characters if they are not part of a variable name. If you
are porting programs that have continuation characters
immediately after identifiers or reserved words then use the U-
option or click on the appropriate box in the Compile requester.

Concepts Page 55

For example:

IF x THEN
PRINT "hello"

will be accepted in some BASICs as a one-line IF statement (no need
for an END IF). Without the U- flag HiSoft BASIC Professional will give
an error because it thinks you are using a variable called THEN . To
solve this use U+ or insert a space in front of the _ character.

If you use U- and inadvertently use an identifier containing an
underline you may get a very strange error message because the
compiler has ignored the rest of the line.

Data Types

There are five types of data in HiSoft BASIC Professional:

|Strings l

A string is a sequence of characters that may be up to 16 megabytes
long assuming you have enough memory. Strings may contain any
character with a value of O to 255 inclusive.

lIntegers |

Integers are numeric and consist of the whole numbers from -32768
to 32767.

[Long Integers \

Long integers are numeric and consist of the whole numbers
between -2147483648 and 2147483647.

|Single precision numbers |

Single-precision numbers have approximately seven digits of
precision and a range of 5.4E-20 to 9.2E-18 for positive values and -
2.7E-20 to -9.2E18 for negative values.

Page 56 Concepts

[Double precision numbers

Double precision numbers have approximately 16 digits of precision
and a range of 4.9E-324 to 1.8E308 for positive numbers and -4.9E-324
to -1.8E308 for negative numbers. There is loss of precision with
numbers of magnitude less than 2.2E-308.

Constants

Constants are values which do not change during program
execution. Constants may be of all 5 types.

A string constant is a sequence of ASCII characters enclosed in
double quotes (°). These can be any character between 32 (space) and
255. To obtain a double-quote in a string repeat it, so that, for
example, the string consisting of one double quote character is """,
The first is the start of the string, the second and third form the
character itself and the last is the closing quote.

Numeric constants are formed in one of the following ways:

IDecimal numbers

|

A sequence of decimal digits followed optionally by a decimal point ()
and more digits and/or an exponent. An exponent consists of the
letter d, D, e or E followed by a decimal integer. E indicates single
precision and D indicates double precision. The number may be
preceded by a minus sign as may the numeric part of the exponent.
The number before the decimal point may be omitted. The number
may be followed by a type specifier (%,,& or #).

|[Hexadecimal Constants

Hexadecimal constants start with &H or &h and are followed by
hexadecimal digits(0-9, a-f, A-F). The number may be followed by a
type specifier (%,1.& or #).

Hexadecimal integer constants between &h8000 and &hFFFF are
taken as signed 16 bit integers. Hexadecimal long integer constants
between &h80000000 and &hFFFFFFFF are treated as signed 32 bit
constants.

Concepts Page 57

For example:

&h7FFF
&h8000
&h8001
&hFFFF
&h10000
&h7FFFFFFF
&h80000000
&hFFFFFFFF

&h100000000

= 32767
= -32768
= -32767
= -1

= 65536

= 2147483647

= -2147483648

= -1

= 4294967296

integer
integer
integer
integer
long integer
long integer
long integer
long integer

double

If you want &h8000 to be treated as +32768 then follow the number
with & and it will be treated as a long and thus positive.

eg

&h8000& = 32768

long integer

|Octal Constants

Octal constants start with &O or &o or just simply &. and are
followed by octal digits (0-7). The number may be followed by a type
specifier (%,!,& or #). The type of an un-terminated octal constant is
determined by the same rules as for hexadecimal constants (see

above).

IBinary Constants

]

Binary constants start with &B or &b and are followed by the digits 0
or 1.The number may be followed by a type specifier (%,!,& or #). The
type of an un-terminated binary constant is determined by the same
rules as for hexadecimal constants described previously.

Page 58

Concepts

[Character constants

These start like strings of only one character and are followed by the
% character and have a value equivalent to the ASC() of the character.
However they are generally easier to read and more efficient than the
ASC() equivalent.

[Types of Constants

The rules regarding what type a constant is are rather complicated
but in general you should find that normally the compiler does what
you expect. The most common problem is that some hexadecimal
constants are treated as negative. If this is a problem please see the
Hexadecimal Constants section above. The following are in
decreasing order of importance:
1. A terminating character is used. If the number is terminated by:

% it is taken as an integer

& it is taken as a long integer

! as a single precision floating point number

as a double precision floating point number.

2. If the number is hexadecimal or octal and lies in the following
range:

0 to &hFFFF it is taken as an integer
&h10000 to &hFFFFFFFF it is taken as a long integer
&h100000000 upwards it is taken as a double.

For the rules concerning whether a constant is treated as negative
see above.

3. If the number is decimal and it is not a whole number and has
more than 6 digits in the whole number and decimal parts, then it is
a double.

4. If it has an exponent of the form D or d then it is a double.

5. If it has an exponent of the form E or e then it is an integer.

6. If it has a decimal point then it is a single precision number.

Concepts Page 59

7. If it is a whole number less than or equal to 32767 it is an integer.

8. If it is a whole number less than or equal to 2147483647 it is a long
integer.

Examples:
1 integer
1.0 single precision (.)
1.0E0 single precision(. and E)
1E1 single precision
1.00000 single precision
1.000000 double precision (7 digits)
1.000000E0 single precision(t overides 7 digits)
1D0 double precision (D)
1D0% integer (% over-rides D)
1.0s long integer (s overides .)
1D0! single precision (! overides D)
14 double precision

[Variables and Reserved Words]

Variable names start with a letter and subsequent characters may be
letters, digits, or full stops (). In addition underlines () may be
included if you haven't switched this off using the U- option. For
maximum compatibility with other BASICs don't use underlines or
full stops.

Lower and upper case are treated as the same in variable names and
reserved words so that PRINT , Print and Print are all the same
reserved word.

Variables may be terminated with a type specifier % (integer), & (long
integer), ! (single precision floating point) or # (double precision
floating point). If there is no type specifier then the type is
determined by the current DEFtype statement for the first letter of
the variable. If there have been no DEFtype statements then single
precision (!) is used.

Page 60 Concepts

Compiler error messages specifying variable names always include
the type specifier that has been assumed.

For example, the following gives the types of the respective variables:

DEFINT i-k

DEEFSTR s

DEFDBL g-r

i% integer

i integer i% (same as above)

1 (also the same as above)

is long integer (different)

strl string (same as strls)

real valuel double (same as real valuel#)

You can not use reserved words as the names of variables or sub-
programs. The reserved words are listed in full in Appendix D.
Reserved words and variables may be entered in upper or lower case
or a mixture of both.

In general using reserved words with type specifiers should be
avoided for compatibility reasons.

GO is not a reserved word. However if GO is followed by TO or SUB
then it is made into GOTO or GOSUB respectively; so you can have
white space between GO and TO and it will still be treated as GOTO.
Thus you can use GO as a variable name if you like but some strange
things can happen, such as

FOR i=gc TO from STEP 2
is misunderstood because the compiler considers this to be
FOR I = GOTO from STEP 2

Variables must not start with FN because they would be treated as
function names. The same rules for determining the type of a
variable are used to determine the types of functions. The following
are function names:

FNtest
FNsine&

FNget.one.character

Concepts Page 61

Sub-program names must not have a type specifier because they do
not have a type. You may use the same name for a variable and a sub-
program although the type specifier of the variable must be used
explicitly. However, this can be very confusing. For example

SUB john
john%=42
END SUB

john%=52: john

Arrays

Array names follow the same rules as for variables and their types
are determined in the same way. You may use the same name for an
array and an ordinary variable. Normally arrays are followed by an
open parenthesis, except in the ERASE statement and the UBOUND
and LBOUND functions when this is assumed automatically.

Arrays are tables of values each of the same type. Normally the
number of elements in an array and the number of dimensions is
specified with a DIM statement (see Chapter 5). There are no
restrictions on the size of arrays other than available memory and
subscripts may be long integer values if applicable. The maximum
number of dimensions for an array is 31 (which would take up a
minimum of 4 gigabytes of memory if each index had more than one
element).

If the DIM statement is not used the maximum subscript is assumed
to be 10. If you have switched off array checks using compiler option
A- then you must use the DIM statement. The minimum value of
subscripts is 0 unless an OPTION BASE statement is used. When
referenced, the element of the array to be accessed is specified by one
or more expressions inside parentheses and separated by commas.
The expressions may be of any numeric type although single and
double precision real values will be converted to long integers.

For example, given:

DIM A(30), BS$(table entries,4), table&(100000)
DIM t% (fred*fred),c(n,n,n)

then the following are valid array references:

Page 62 Concepts

A(iy
B$(3*3,2)
table& (1&)
t%(k-1)
c(i,j, k)

For more information on arrays see the Advanced Arrays section in
this chapter.

Operators

Expressions are made up of constants, variables, array variables,
function calls and operators. The order of priority is listed below with
the highest priority first:
1 Exponentiation (to the power of) (4)
Unary Minus (-)
Multiplication (*) and Floating Point Division (/)
Integer Division (\)
Modulus (MOD)
Addition (+) and Subtraction (-)
Comparisons (=,<>,>,<,>=,<=, ==)
NOT
AND
» OR and XOR (exclusive or)
EQv
12. IMP
The only exception to this is that X*-y is evaluated as x*(-y).

© ® N O ;oA W N

b
- O

To change the order of evaluation use parentheses (round brackets).

The guiding principle for the precision used when evaluating
expressions is that the minimum precision is used that will ensure
that accuracy is not lost.

Concepts Page 63

The exponentiation operator (#} always has its operands converted
to either single or double precision floating point and returns a result
of the same type. Single precision is used if the operands are either
integer or single precision. If either operand is a long integer or is
double precision then it is evaluated in double precision for accuracy.
See Figure 4-1 below. This operator uses logarithms to give its result
and as such is slow and inaccurate if the second operand is a small
integer.

The multiplication, addition, subtraction and unary minus
operators may have operands of any numeric type with the following
table giving the result of the expressions:

integer Iong single double

integer integer long single double

long long long double double

single single double single double

double double double double double
Figure 4-1

Addition may be also used for strings when it means concatenation
so that, for example:

WARC" +Y"DEF" ="ARBRCDEF"

Floating point division operands are always converted to single or
double precision floating point numbers, the following table (Figure 4-
2) gives the result of the expression:

integer long single double

integer single double single double

long double double double double

single single double single double

double double double double double
Figure 4-2

The integer division operator \ uses long integer (32-bit) arithmetic
unless both operands are integers in which case integer (16-bit)
arithmetic is used.

The comparison operators always return an integer value of -1 for
true and O for false. The comparison is evaluated using the type given
in Figure 4-1 above for numeric types. Strings may also be compared.

Page 64 Concepts

000000000000 000000000000000000000000000000

The comparison operators are

= equality

<> inequality

> greater than

< less than

>= greater or equals
<= less than or equals

== almost equals (two equals signs)

The almost-equals operator is a HiSoft BASIC Professional extension
for single or double precision floating point comparisons and it is
defined as follows:

x==y
calculates
ABS (x-y) <= ABS(y * 1lE-6)

Thus == can be used to check for near equality even if a small number
of rounding errors have been introduced. For integers and long
integers the comparison is the same as equals and for strings the
comparison is the same as equals except that lower case letters are
treated as equal to their uppercase counterparts. For example:

2.0==2.0 is true
2.0==1.999999 is true
2.0==1.99999 is false

A string is considered less than another if the first character that
differs is less in the first string, If the strings are the same until one
string is exhausted then the shorter string is less. All the following
examples are true:

"Fred"<"Hello" because "Fr< y"
"Frederick"<"Hello" because "F"<"H"

"fred">"Hello" because "f">"H", The lower case letters come
after the upper.

"Frederick">"Fred" because "Frederick" is longer

Concepts Page 65

All the logical operators NOT, AND, OR, XOR, EQV and IMP use long
integer arithmetic (32-bit) unless both operands are integers in
which case integer arithmetic is used. These operators work bitwise,
with each bit affected as shown below.

X Y NOT AND OR XOR IMP EQV
0 O 1 0 0 0 1 1
o 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
T 1 0 1 1 0 1 1

Although these operations work on the individual bits they have the
same affect as the corresponding logical operators if you use -1 for
TRUE and O for FALSE.

Examples:
-1 OR -1 =-1
4 OR 3 =7 (100 and 011 in binary)
-1 XOR O =-1
8 AND 4 =0 (1000 and 100 in binary)

Sub-programs and User Defined
Functions

Sub-programs and user defined functions are one of the most
powerful features of many modern BASICs and HiSoft BASIC
Professional takes these ideas even further.

The idea of a sub-program is to isolate part of the code of your
program in a way that makes it easy to call and easy to ensure that it
is not interfering with variables that it isn't supposed to use.

The simplest definition of a sub-program is something like
SUB hello

PRINT "hello"

END SUB

The SUB statement defines the name of the sub-program that we are
defining and the END SUB indicates that we have finished.

Page 66 Concepts

Sub-program definitions may not contain other sub-program
definitions.

The hello sub-program can be called using
call hello
or even just

hello

and will print the word rello. You can call sub-programs before or
after their declarations.

So far this doesn't give us anything that you can't do with old-style
BASIC GOSUB...RETURN statements. However by passing parameters
to sub-programs we can make the sub-program work on different
variables or values.

[Variable Parameters]

Sub-programs may have two different sorts of parameters, value and
variable parameters. By default parameters are variable parameters
and are passed by reference. This means that if the sub-program
modifies the parameter the variable that it is called with is modified.
For example:

SUB TimesTwo (V)

v=v*2

END SUB

If we call this using

INPUT " Enter a number";1i
CALL TimesTwo (i)

PRINT i

and enter the number 42, i will be modified and then twice this, 84
will be printed.

The shortened form of the CALL statement above is:

TimesTwo 1

Note that the brackets are not used.

Concepts Page 67

When using variable parameters, if you pass an expression rather
than a variable of the required type then any modifications to the
parameter are lost. Thus the type of the variable must be the same as
the parameter.

If we changed the calling code to be:

INPUT i#

TimesTwo i#

PRINT i#

then the variable i# would not be modified.

You can pass array elements as variable parameters; this causes the
subscripting expression to be calculated before the sub-program is
called.

e.g
TimesTwo a{3)

would double the value of a (3). However this should be avoided if you
are using ERASE and REDIM APPEND inside sub-programs; see the
Advanced Arrays section in this chapter for more information.

If you want to call a sub-program that normally would modify the
variable, but on this occasion you don't want this to happen, then
enclose the variable name in parentheses e.g.

TimesTwo (i)

If you have more than one parameter for a sub-program then they
should be separated by commas in both the call and the definition.

For example:

SUB Multiply (i, 73,k)
k=1*7
END SUB

Multiply 2,3,1
PRINT 1

This will print 6. Note that the i that is a parameter and used in the
sub-program is an entirely different entity to the i in the main
program.

Page 68 Concepts

\Value Parameters

Parameters may also be called by value, which means that a variable
will not be modified. To indicate that a parameter is passed by value
precede it in the definition with the keyword VAL. So the above
example could be coded as:

SUB Multiply(VAL i,VAL 7,k)
k=1%1
END SUB

Multiply 2,3,1
PRINT 1

Value parameters are more efficient than variable parameters and
are a HiSoft BASIC Professional extension. In most other BASICs
with sub-programs you must use variable parameters and enclose
them in parentheses. This works fine unless you forget the brackets,
when you can modify your main program variables by mistake. In
general make a parameter a VAL parameter unless you want to
return a value.

[STATIC variables]

In the examples so far we have only used parameters inside sub-
programs. However sub-programs may have their own variables. For
example

SUB Sum{(val n, k)

STATIC count,total

total=0

FOR count=1 TO n
total=total+count

NEXT count

k=count

END SUB

Sum 4, result
PRINT result
will print

10

which is 1+2+3+4.

Concepts Page 69

The word STATIC is used to introduce ordinary local variables. You
can use commas to separate them. In fact if you omit the STATIC
statement, the above will still work because STATIC is assumed by the
compiler. However we recommend strongly that you use this
statement together with the variable checks flag (V+) as described in
Appendix A. This will warn you if you mis-spell variables in sub-
programs.

For example if we had typed
k=k+cont

in the example above, the compiler would complain that the variable
cont was not declared.

STATIC variables are zeroed when the program starts running but are
not modified between different calls to the procedure. In the example
above if we called the Sum sub-program again Total would have a value
of 10 so we must zero it each time.

[SHARED variables I

You can also use variables from your main program inside sub-
programs by using the SHARED statement. For example we could
code the example above as:

SUB Sum (VAL n)

STATIC count,total

SHARED k

total=0

FOR count=1 TO n
total=total+count

NEXT count

k=count

END SUB

Sum 4
PRINT k

This is however less flexible than the original example because it
modifies only one particular variable.

Using SHARED variables with variable parameters which should be
value parameters can lead to the following difficult-to-spot bug
shown on the next page:

Page 70 Concepts

SUB process(t)
SHARED token
IF t=3 OR t=4 THEN

token=5
IF t=4 THEN ' problem

END IF
END IF

One would naturally expect t to be 3 or 4 at the point marked problem
since t was 3 or 4 in the previous IF statement. However if the sub-
program process was called as

process token

then this would not be the case because the modification of token will
also change t. This can be solved by enclosing t in parentheses or,
even better, by making the parameter a value parameter. This
problem can also occur if the variable token was modified by a sub-
program that is called inside process, which is even more difficult to
spot.

If you have some variables that are imported into many sub-
programs and you wish to avoid having SHARED statements each
time, you can use the DIM SHARED statement which causes the
variable to be SHARED with every sub-program. For example, if you

have

DIM SHARED debug flag

then you can use debug flag anywhere in your program.

Concepts Page 71

|[Recursion and Local variables |

Sub-programs may be called recursively i.e. they may call themselves.

SUB Fibonacci (VAL n, r)
LOCAL templ, temp2

SELECT CASE n

CASE 0: r=0

CASE 1: r=1

CASE REMAINDER:
Fibonacci n-1, templ
Fibonacci n-2, temp2
r=templ*temp2

END SELECT

END SUB

FOR 1=0 TO 15
Fibonacci i, res
PRINT res;

NEXT i

This prints the first few numbers in the Fibonacci sequence, in which
the nth term is the sum of the two previous terms with the sequence
starting with O, 1, This is, in fact not the most efficient way to
code this algorithm in HiSoft BASIC Professional; the algorithm can
also be improved very easily.

The above example also introduces LOCAL variables. These are like
STATIC variables in that they cannot be accessed outside the sub-
program. However a new variable is created for each invocation of the
sub-program. This becomes important when you have recursive
calls. In the example above if there was only one variable templ then it
would be corrupted during the second recursive call. Try it and see.

The memory for use of local scalar numeric variables is allocated on
the machine stack. If you make heavy use of recursive calls with large
numbers of local variables it is possible to run out of stack. Use the R
option, see Appendix A for details.

Strings may also be used as parameters and local variables in exactly
the same way as numbers. The only difference is that the actual data
in the strings is allocated on the heap and not on the machine stack.

Page 72 Concepts

|User-Defined Functions |

As well as sub-programs you can also have user-defined functions.In
HiSoft BASIC Professional there are two methods of defining user-
defined functions, DEF FN and FUNCTION. In old-fashioned BASICs
and even in HiSoft BASIC Professional for the Atari ST at the time of
writing only the DEF FN form can be used and we will discuss this
first. Old-style BASICs restrict you further in that these can only be
one line long. For example,

DEF FNrad (x)=x*3.141592653589793

which converts an angle in radians to degrees and could be used as
follows

PRINT SIN(FNrad(45))

to give the sine of 45 degrees. The names of such user-defined
functions must start with FN.

However, in HiSoft BASIC Professional, DEF FN functions may have
all the facilities of sub-programs with the following differences:

User defined functions return results by assigning to a pseudo-
variable with the name of the function. For example

DEF FNfactorial (n)
IF n<=1 THEN
FNfactorial=1
ELSE
FNfactorial=n*FNfactorial (n-1)
END IF
END DEF

which calculates the famous factorial function. Note that the
definition finishes with END DEF and that on the right hand side of
the assignment FNfactorial causes the function to be called again
recursively.

The big difference between user-defined functions and sub-programs
is that, in functions, parameters are call-by-value by default and to
specify call-by-variable you should precede them with VARPTR. If you
do not use variable checks, variables are assumed to be SHARED
rather than STATIC.

Concepts Page 73

Here is another coding of the Fibonacci example:

DEF FNfibonacci (n)
SELECT CASE n
CASE 0: FNfibonacci=0
CASE 1: FNfibonacci=1l
CASE REMAINDER:
FNfibonacci:= FNfibonacci (n~-1)+FNfibonacci (n-2)
END SELECT
END DEF

FOR i=0 TO 15
PRINT FNfibonacci (1i);
NEXT i

Clearly this gives a neater solution without the LOCAL variables.

Incidentally you can leave out the space between the FN and the
function name,

The FUNCTION syntax makes user-defined functions even more like
sub-programs. There is no restriction on the name of the function
and the rules for parameters and local variables are the same as for
sub-programs. For example, here's yet another coding of the
Fibonacci example:

FUNCTION Fibonacci (VAL n)
SELECT CASE n
CASE 0: Fibonacci=0
CASE 1: Fibonacci=1l
CASE REMAINDER:
Fibonacci:= Fibonacci (n-1)+Fibonacci (n-2)
END SELECT
END FUNCTION

FOR i=0 TO 15
PRINT Fibonacci (i);
NEXT i

This gives probably the neatest solution to this classic problem.

FUNCTIONSs must be declared before they are used. The normal way to
this is to ensure that the FUNCTION END FUNCTION statements are
before any calls of the function. If you wish to use a function before
you define it then you can use the DECLARE statement. This specifies
the parameters of a function in the same way as a FUNCTION
statement but does not actually contain any code.

Page 74 Concepts

For example,
DECLARE FUNCTION Fibonacci (VAL n)

FOR i=0 TO 15
PRINT Fibonacci (i);
NEXT 1

FUNCTION Fibonacci (VAL n)
SELECT CASE n
CASE 0: Fibonacci=0
CASE 1: Fibonacci=1l
CASE REMAINDER:
Fibonacci:= Fibonacci (n-1)+Fibonacci (n-2)
END SELECT
END FUNCTION

FOR i=0 TO 15
PRINT Fibonacci (i);
NEXT i

This is our final Fibonacci example (honestly!). A couple of points to
note:

*The form of the DECLARE statement is exactly the same as the
FUNCTION statement with the word DECLARE at the front.

*DECLARE statements are needed for two reasons. First, they enable
the compiler to check that the correct number and type of
parameters have been used. Second, otherwise the compiler would
think that Fibonacci (1) in the example above was referring to an
array Fibonacci (). In fact probably the only advantage of the FN
syntax is that you can instantly see the difference between a
function call and an array access. Of course, you could easily decide
to use the same conventions with FUNCTION definitions.

DECLARE statements can also be used for sub-programs. They are
not required by HiSoft BASIC Professional but can be useful for
compatibility with other modern BASICs such as QuickBASIC. You
can also use them as a documentation aid by having DECLARE
statements at the front of your program for all the sub-programs
and functions .

If you call a function which performs input/output inside another
statement that performs input/output strange things may happen.
There is no good reason for doing this and it should be avoided.

Concepts Page 75

[Arrays and Sub-programs |

Arrays may be used as parameters to sub-programs and user-
defined functions. They are specified both in call statements and
definitions with open and close parentheses after their names. The
definition should contain the number of dimensions of the array.
Arrays are always passed by reference.

DIM b(3,6)
MatSum b (), res

PRINT res

SUB MatSum(a (2),Xx)
STATIC i,7,Xx
x=0
FOR i=LBOUND(a,1l) TO UBOUND(a,1l)
FOR j=LBOUND (a,2) TO UBOUND(a, 2)
x=x+a (i, Jj)
NEXT j
NEXT i

END SUB

This sums all the elements of the two dimensional array.The
corresponding DEF function definition would be:

DIM b(3,6)
PRINT fnMatSum(b())

DEF fnMatSum(a(2))
STATIC 1i,3,Xx
x=0)
FOR 1=LBOUND(a,1l) TO UBOUND(a, 1)
FOR j=LBOUND(a,2) TO UBOUND(a, 2)
x=x+a (i, J)
NEXT j
NEXT i
fnMatSum=x
END SUB

Sub-programs may share arrays with the main program. The
SHARED and DIM SHARED statements may be used as for scalar
variables. The DIM SHARED statement when used with arrays also
dimensions them. The SHARED variables statement should specify
the number of dimensions of the array although this is not enforced.

Page 76 Concepts

For example,

DIM SHARED table (100)
'table () can now be access anywhere in the program.

or alternatively

DIM table (10)
table(10)=42 : Silly

SUB Silly
SHARED table(l) : PRINT table(10)
END SUB

This will print 42.

[Local Arrays I

Arrays may also be local to a sub-program and both STATIC and
LOCAL varieties are supported. When using STATIC you need to make
sure that the array is not dimensioned more than once. In the
STATIC statement the number of dimensions may be included in
parentheses. For example,

'constants for Table Handler operations
CONST init=0, insert=1, find =2, replace=3

TableHandler init,0,0 ‘initialise the table
SUB TableHandler (operation, index, value)
STATIC table(l), first free

SELECT CASE operation
CASE init
DIM table (100)
first free=0

CASE insert

In this example the array will only be dimensioned once, as long as
the TableHandler sub-program is not called with a parameter of init
more than once.

Using the LOCAL statement arrays may be created for the duration
of this call to the sub-program. They are erased automatically at the
end of the call. The actual dimensions are given in the LOCAL
statement.

Concepts Page 77

For example:
SUB Recursive

LOCAL temp(40) ' a temporary array with elements up to
temp (40) .

END SUB

Advanced Arrays

As well as the DIM, SHARED, STATIC and LOCAL statements described
above there are a number of other array facilities that are not
available in primitive BASICs.

The UBOUND and LBOUND functions return the size of arrays. See
the example Mat Sum previously.

The lower-bound of arrays created by the DIM statement can be
changed from the default value of 0 to 1 by the OPTION BASE
statement, for example:

OPTION BASE 1 ‘arrays now start at one.

OPTION BASE is an executable statement, and so its effect depends on
the order of execution in the program, not the order of the program
text. It is thus possible for an array to have different dimensions if it
is ERASEd and then REDIMmed. Using OPTION BASE normally only
saves a considerable amount of memory if you are using 3 or more
dimensions in an array.

When array checks are switched off OPTION BASE statements are
ignored.

ERASE may be used to free the space used by an array when it is no
longer required. This is particularly useful if you have temporary
results stored in an array. Once an array has been ERASEd you can
DIM it again.

Page 78 Concepts

For example,

DIM temp(10000) ' 10000 temporary results

ERASE temp

' note that temp is not followed by parentheses. This
' anomaly 1is present for compatibility with other BASICs

The REDIM statement gives the equivalent of an ERASE followed by a
DIM in one statement. Thus

REDIM temp (100)

is equivalent to

ERASE temp: DIM temp(100)

HiSoft BASIC Professional has a powerful extension to let you
Z};’T’?ﬁe&the size of arrays whilst retaining their data called REDIM

For example:

SUB AddElement (value)
SHARED table(l), maxentries, nextentry

IF nextentry> maxentries THEN
' no room for this entry
maxentries=maxentries+100
REDIM APPEND table (maxentries)
' the above makes the array 100 elements larger

END IF

table(nextentry)=value 'enter the value
nextentry=nextentry+l 'ready to store the next one
END SUB

This example shows how you can avoid fixed limits on the sizes of
arrays. If you run out of room just make it a bit bigger. REDIM APPEND
requires enough memory to make a copy of the array. You can also
use REDIM APPEND to make arrays smaller; again a copy of the array
is made.

Concepts Page 79

Normally the ERASE, REDIM and REDIM APPEND statements cause
arrays to be moved in memory. As a result, if there are any pending
array elements that have been used in variable parameters, then
these will be become invalid. The best way to avoid this is by not
passing array elements by reference. For example the following may
not work as intended:

DIM x(50), a(30)

Subprog a(3) ' note variable parameter.
SUB Subprog(b) ' note variable parameter
ERASE x

' a() will now become corrupt, it has
' been moved because it was declared
' after x() which has been erased

END SUB

Unlike many BASIC compilers, HiSoft BASIC Professional will let you
change the number of dimensions of arrays with a REDIM statement.
This may prove useful when porting certain programs that were
developed with interpreters, however we recommend strongly that
you avoid this as it can make programs almost un-maintainable.

Limitations Imposed by the Compiler

We have tried to avoid placing limits on the programs you can write.
For example, most compilers have a limit on the number of
characters that are significant in an identifier; HiSoft BASIC
Professional does not impose any limit on this so that

A very long identifier indeed which goes_on_and on
is different from

A very long_identifier indeed_which_goes_on_and_on_and is_d
ifferent

This sort of limitation may not seem important to you, but such
possible restrictions have the annoying habit of appearing when you
think you have nearly finished a large program.

The next section lists the remaining limitations other than the total
workspace of the compiler. If you find these restrictive please tell us.

Page 80 Concepts

A program may not have more than 12287 lines. If you hit this limit
you can probably get round it by having more than one statement
per line. We have a 5000 line program which is about 135K bytes of
source.

The total number of active labels in the code generation phase of the
compiler may not exceed 2999. A label is generated for each line
number or label that is referenced (not for those that are un-used)
together with 2-3 or each sub-program, 2 for each CASE in SELECT
statements plus 2 for the SELECT itself and 2 for most structure
statements. For example our 5000 line program requires about 1100
such labels.

There is a limit of approximately 8000 on the number of sub-
programs, local variables and parameters in the entire program.

The total number of different names in your program may not
exceed 32767.

The total code of a SELECT statement may not exceed 32k bytes. To
avoid this make some of the alternatives into sub-programs.

The total size of some FOR...NEXT loops may not exceed 32k bytes. To
avoid this make some or all of the loop into a sub-program.

Sub-programs and user defined functions may not have more than
128 parameters.

The total space for global and STATIC local variables and the
descriptor table may not exceed approximately 29K bytes. The
amount of storage, in bytes, in this area required for the different

types is:

2 integers
4 long integers, single precision numbers
8 strings, double-precision numbers, all arrays

The data in strings and arrays is not stored in this area.

Local variable stack space may not be more than 32k bytes per
invocation. The different types require the number of bytes given in
the table above. There is a limit of 255 channels.

ON...GOTO and ON...GOSUB statements may not have more than
8190 line numbers each (1)

Concepts Page 81

Concepts

Page 82

Chapter 5
Command Reference

This chapter gives a detailed description of each and every HiSoft
BASIC Professional statement and function.

It is arranged as follows:

e Syntax

This shows the allowable forms of the statement or function.
Parameters are denoted in italics and optional items are enclosed
in square brackets [].

o Effect

Details a summary of the actions of the statement or function.

¢ Comments
This describes the actions in much greater detail, where required.

e Example
Shows one or more examples of the statement or function in use.

Command Reference Page 83

ABS function

e Syntax

ABS (numeric expression)

o Effect

This function returns the absolute value of the numeric expression

e Comments

The absolute value function returns the unsigned value of the
numeric_expression. The absolute values of both -1 and 1 is 1. The
type of the result is the same as the type of numeric expression.

e Example
PRINT ABS (6* (7)), ABS(6*(-7))

Result:

42 42

Page 84 Command Reference

AREA statement

e Syntax
AREA [STEP] (x,y)

e Effect
Adds a point to the list to be used by the next AREAFILL statement.

e Comments

To draw a filled polygon with HiSoft BASIC Professional, specify the
points using the AREA statement and then draw the polygon with
the AREAFILL statement.

If the STEP keyword is used then the co-ordinates x and y are treated
as relative to the current graphics pen position, otherwise they are
treated as relative to the current window.

A maximum of 20 AREA statements may be used between calls to
AREAFILL; subsequent AREA statements will be ignored. There is no
need to specify the starting point again as the end point.

To draw a polygon that is not filled use the LINE statement.

e Example

AREA (50, 50)
AREA STEP (40,0)
AREA STEP (0, 30)
AREAFILL

Result:

Draws a filled triangle with corners (50,50), (90,50), (90,80) in the
current window.

Command Reference Page 85

AREAFILL statement

e Syntax
AREAFILL [fill mode]

e Effect
Fills or inverts the polygon specified by AREA statements.

¢ Comments
Sfill. mode is an integer expression. If it evaluates to

0 then the area pattern specified by the pattern statement is
used;

1 then the area is inverted.

If the ‘fill mode is omitted then the area is filled with the current
pattern as if AREAFILL 0 had been used.

See the AREA statement for the details of setting the points.

e Example
AREA (20,20)
AREA (30, 20)
AREA (60, 30)
AREA (20, 30)
AREAFILL 1

Result:

Inverts a wedge shaped area of the screen.

Page 86 Command Reference

ASC function

e Syntax

ASC(string expression)

o Effect

This function returns a numeric value that is the ASCII code for the
first character of the string expression.

e Comments

If the string passed is a null-string, an Illegal function call
error is returned. The result is an integer.

e Example

X$="FORTY~-TWO"
PRINT ASC(X$) 'Prints ASCII code for "F"

Result:

70

Command Reference Page 87

ATN function

e Syntax

ATN (numeric expression)

+ Effect

This function returns the arctangent of the numeric_expression, or
the angle whose tangent is the numeric_expression.

¢ Comments
The result is returned in radians, in the range of -x/2 to n/2 radians.
The numeric _expression can be of any numeric type. ATN is single

precision by default; if the numeric value is double precision, ATN
returns a double precision value.

e Example
PRINT 4*ATN(1l),;4*ATN(1#)

Result:

3.141593 3.141592653589794

Page 88 Command Reference

BEEP statement

e Syntax
BEEP
e Effect

Flashes the screen.

e Comments

BEEP uses the ASCII bell character; the same effect can be obtained by
using PRINT CHR$ (7);. Unfortunately this does not actually cause
any sound to be made. If we had included this ability then every
program that printed to the screen would need to include the large
amount of code and workspace that producing sound on the Amiga
requires.

The equivalent of the interpreter's BEEP statement may be achieved
using

BEEP : SOUND 880,2

e Example

PRINT "Watch out!"
BEEP

Command Reference Page 89

BINS function

e Syntax

BIN$(numeric_expression)

e Effect

This function returns a string which is the binary representation of
numeric expression.

e Comments

BIN$ returns the representation of the integer part of
numeric_expression. If the expression is an integer then the
resulting string will be from 1 to 16 characters in length, but if it is a
long integer then it can be up to 32 characters long.

e Example
PRINT BINS (8)

Result:

1000

Page 90 Command Reference

Q..C.QQCQCQOC.O..OCQ...‘.A‘..Q.Q...O.'...CQ.

BLOAD statement

e Syntax
BLOAD filename, address

* Effect
This statement loads a binary file into the buffer specified.

e Comments

The rilename is a string expression following the standard
AmigaDOS conventions. The address is a long integer.

The buffer address is the responsibility of the user. BLOAD does not
check if the address given is a safe address in RAM.

This statement is not provided by AmigaBASIC but is supported by
HiSoft BASIC Professional on the Atari ST and some versions of
Microsoft BASIC.

e Example

DIM A% (16000)
BLOAD "PICTURE.DMP",VARPTR(A%(0))

This line loads a binary file directly into the array a%(. If the file
PICTURE.DMP is more than 32000 (16000*2) bytes long then the
system may crash as the data will not all be loaded into the array

Command Reference Page 91

[BREAK statement

e Syntax
BREAK {ON|OFF|STOP}

e Effect

Modifies the break event trapping to change the effect of ON...BREAK
statements.

e Comments

BREAK ON should be used to enable break event checking. This will
cause ON BREAK statements to be acted on whenever the user
presses Ctrl-C or A.

After a BREAK OFF statement is these keys will be ignored whilst the
program is not waiting for input.

BREAK STOP causes menu events to be stored until a BREAK ON
statement occurs. The ON BREAK...GOSUB will then be acted on. This
can be useful to suspend menu processing whilst some essential
code is executing.

If the break checks compiler option is on then the program will stop
when break is pressed, regardless of any ON BREAK statements.

e Example

ON BREAK GOSUB StopMe
BREAK ON

StopMe: STOP
' causes the program to stop if Ctrl-c or A. are pressed.

Page 92 Command Reference

BSAVE statement

e Syntax

BSAVE filename, address, length

o Effect

This statement saves the contents of the specified buffer to the
output device specified in rilename.

e Comments

It is possible, though not necessarily useful, to BSAVE to the parallel
or serial ports. Both the address as well as the length of the buffer
are long integers. The filename must follow the AmigaDOS
conventions.

This statement is not provided by AmigaBASIC but is supported by
HiSoft BASIC Professional on the Atari ST.

e Example
BSAVE "ARRAYA"™,VARPTR (a% (0)), VARPTR ((UBOUND (a%) +1) *2)

This line saves the entire array a%() to a disk file named ARRAYA.

Command Reference Page 93

CALL siafement

e Syntax

[CALL] sub program name [(parameter [,parameter]..)]

 Effect
Calls a sub-program defined using SUB...END SUB or a library routine.

e Comments

sub_program name is the name of the sub-program being called.
There must be the same number of parameters as in the sub-
program's declaration.

Further information on sub-programs can be found in Chapter 4.

The keyword CALL can always be omitted if the sub-program has
parameters and if it is not the first statement of a multi-statement
line; this is to avoid conflicts with label declarations which are also
identifiers followed by a colon. If CALL is omitted the brackets round
the parameters must be omitted.

Array parameters must be passed array names followed by () in
CALL statements and string parameters must be passed strings.
However different numeric types will be converted to the type
required by the sub-program.

Parameters are passed by reference only if they consist of just a
variable of the same type as in the declaration of the sub-program
and the VAL keyword was not specified for the parameter when the
sub-program was defined. Array elements may be passed as variable
parameters.

You can pass a variable by value when it would otherwise be passed
by reference simply by enclosing the variable in parentheses.

Page 94 Command Reference

e Examples

QuickSort MyArray(),100

CALL QuickSort (MyArray(),100) ' these are equivalent

QuickSort (MyArray (), 100) ' syntax error because
' of brackets

call SKIP ONE:SKIP ONE ‘'call required for first call

FRED X ' call by reference
FRED (X) ' call by value
Command Reference Page 95

CALL LOC statement

e Syntax

CALL LOC address [,parameter]..

e Effect

Call a machine-code routine, with the option of passing long integer
parameters.

e Comments

This is directly equivalent to the AmigaBASIC machine language
CALL statement. Unfortunately we had to change the syntax to avoid
confusion between machine-code and sub-program CALL
statements.

The machine-code at address is executed, and the parameters can
be found on the stack as long integers in C order.

The machine-code can return to the BASIC program by executing a
RTS statement. All registers except A7 may be destroyed.

¢ Example

DIM spare% (100)

BLOAD "CALCPI",VARPTR (spare% (0))
calcpl&=VARPTR (spare% (0))

CALL LOC calcpis&,100

Page 96 Command Reference

CALLS statement

e Syntax

CALL sub program variable

e Effect

Calls a sub-program indirectly using a variable as a pointer for it.

e Comments

sub _program variable must have been initialised using the
VARPTRS function to point to a sub-program.

Caution: this is for advanced programmers only. Incorrect use of
CALLS can wreak havoc on a running program or its memory area.

e Example

readvchar&=VARPTRS(char_fromﬁdisc)
DO

CALLS read_chars&
LOOP UNTIL no more

SUB char_ from disc

IF EOF (2) THEN
read char&=VARPTRS (char from mem)
CALLS read chars
EXIT SUB

ELSE

END SUB

Command Reference Page 97

CDBL function

e Syntax

CDBL (numeric_expression)

o Effect

This function converts the numeric_expression to a double precision

number.

e Comments

The effect is identical to assigning the numeric expression toa

double precision variable
variable.

e Example

PRINT ATN(1)
PRINT CDBL(ATN(1))
PRINT ATN(CDBL({1))

Result:

.7853982
.7853981852531433
.7853981633974485

and then using the double precision

'single precision
'single extended to double
'double precision accuracy

Page 98

Command Reference

CHAIN statement

¢ Syntax
CHAIN filename

e Effect

This statement loads and executes another program.

e Comments

filename should conform to AmigaDOS specifications and be the
name of an executable (i.e. double-clickable) program, including any
extension. The program does not have to be a HiSoft BASIC
Professional compiled program.

All files, windows and screens are closed before the program is
CHAINed.

¢ Example
DO
INPUT "File to run";f$
LOOP UNTIL FEXISTS(f$)
CHAIN f£$

Command Reference Page 99

CHDIR statement

e Syntax
CHDIR pathname

¢ Effect

This statement changes the current directory.

¢ Comments
The pathname specified must conform to the AmigaDOS conventions.

It is possible to use relative (as opposed to absolute) path names. If a
directory :ONE/TWO exists and it is the current directory, CHDIR "/*"
will change the current directory to one hierarchic level higher (in
this case :ONE).

It is also possible to CHDIR one level downwards. To switch from :ONE
to :ONE/TWO requires CHDIR "TWO"; CHDIR ":ONE/TWO" is not
necessary in this case.

e Example

CHDIR ":HBASIC" 'an absolute path
CHDIR "SOURCE" 'this changes the directory
'to :HBASIC/SOURCE

Page 100 Command Reference

CHRS function

¢ Syntax
CHRS (ASCII code)

e Effect

This function returns a one character string whose ASCII code was
passed as the parameter.

e Comments

CHRS$ is usually used to produce characters which are not readily
available from the keyboard. Common uses are sending a form feed
(ASCII 12) to a printer or printing foreign characters on the screen.
The ASCII code is an integer.

e Example

LPRINT CHRS$(12); 'sends a form feed to the printer
PRINT "Copyright ";CHR$(169);" Acme Programming"

Command Reference Page 101

CINT function

e Syntax

CINT (numeric_expression)

o Effect

This function converts the numeric_expression to an integer value
by rounding its fractional part.

e Comments

If the numeric_expression is not in the range -32768 to 32767, an
Overflow error is returned.

CINT differs from INT and FIX in that it produces an integer value by
rounding. An example of the differences of the three functions can be
found under INT.

This is equivalent to assigning the numeric expression to an integer
variable and then using that variable.

e Example

PRINT CINT(1.5),
PRINT CINT (-1.5)

Result:

2 =2

Page 102 Command Reference

CIRCLE statement

e Syntax

CIRCLE [STEP] (x centre,y centre), radius
[,colour num][,start anglel,end angle] [, aspect]

e Effect

Draws a circle, ellipse or arc in the current window.

e Comments

If the optional angle parameters are omitted, the command draws a
hollow circle or ellipse in the current foreground colour (the first
parameter in the COLOR statement). The angle parameters are
expressed in radians between -2n and +2rn and indicate where the
ellipse or circle is to start and end. Angles are measured anti-
clockwise starting on the right side.

x_centre and y_centre specify the centre of the circle. If the STEP
keyword is used then the circle/ellipse is drawn relative to the
current graphics pen position. After the circle has been drawn the
current graphics position is set to the centre of the circle.

If start_angle or the end angle are negative then a line is line drawn
connecting the end points to the centre of the circle thus drawing a
pie slice. When drawing a pie slice,the angle are treated as if they were
positive.

The colour_num parameter is used to set the colour of the
circle/ellipse and is set using the PALETTE statement. If this
parameter is omitted then the current foreground pen (as set using
the first parameter of the COLOR statement is used.

The aspect parameter is used to-draw ellipses. If aspect <1 then the
x-radius is taken as radius and the y-radius as radius*aspect. If
aspect >1 then the y-radius is taken as y and the x-radius as
radius/aspect. The default value of aspect is 0.44. This is the value
that gives a circle on standard Amiga NTSC monitors. If you are
using another screen, then you may find that you will need a
different value for pure circles.

Solid circles and arcs can be drawn using the CIRCLE statement
followed by the paint statement.

Command Reference Page 103

The x, y, radius and colornum parameters are integers. The
start_angle,end angle and aspect parameters are single-precision
numbers.

e Examples

CIRCLE (200,100),75,,0.' draws a clrcle 75 pixels wide
' centred on position (200,100)

CIRCLE (30,30),10,,0,1.57,0.22
CIRCLE STEP(0,30),10,,0,1.57,0.22
CIRCLE STEP (30,0),10,,0,1.57,0.22
CIRCLE STEP (0,-30),10,,0,1.57,0.22

Page 104 Command Reference

CLEAR statement

e Syntax
CLEAR
e Effect

This statement clears all variables and closes all channels.

¢ Comments
The following actions are taken by this command:

All global numeric variables are reset to zero

All global string variables are reset to a null string (i.e. ")
All numeric arrays have their contents reset to zero

All string arrays have their contents reset to a null string
All files are closed

e Example
IF a$="ZERO" THEN CLEAR

Command Reference Page 105

CLNG function

e Syntax

CLNG (numeri c_expressi on)

o Effect

This function converts the numeric expression to a long integer
value by rounding its fractional part.

e Comments

If the numeric_expression is not in the range -2147483648 to
2147483647, an Overflow error is returned.

CLNG is similar to differs from CINT but returns a long integer value.
It can often be used to ensure that overflow does not take place when
assigning the product of integers to a long integer.

This is equivalent to assigning the numeric expression to a long
integer variable and then using that variable.

e Example
x&=clng (1%)*1000

'is normally better than
x&=1%*1000

'since the latter will give overflow if i% is 33 or more.

Page 106 Command Reference

CLOSE statement

e Syntax
CLOSE [[#]channel numberl[, [#]channel number]..]

e Effect

This statement terminates I/0 to the specified file or device.

e Comments

CLOSE is the opposite of OPEN. The channel number is the number
specified in the OPEN statement for a particular file or device.

CLOSE without parameters closes all OPENed files and devices.

Once a file is CLOSEd, its channel number may be used to OPEN any
unopened other file or device.

Closing a file or device that was opened for sequential output causes
the final buffer to be written before closing.

CLEAR, END/SYSTEM, STOP and RUN close all files and devices
automatically.

e Example
CLOSE #1,#2

Command Reference Page 107

CLS statement

e Syntax
CLS

e Effect

Clears the current output window and returns the cursor to the

upper left corner.

e Comments

Only the current window is affected; other windows will be left alone.

Page 108

Command Reference

COLLISION statement

e Syntax
COLLISION {ON|OFF|STOP}

o Effect

Modifies the collision event trapping to change the effect of
ON...COLLISION statements.

e Comments

COLLISION ON should be used to enable collision event checking. This
will cause ON...COLLISION statements to be acted on whenever an
object collides with the border or another object, i.e. the COLLISION(O)
function would return a non-zero value.

After a COLLISION OFF statement is executed, collisions with be
ignored.

COLLISION STOP causes menu events to be stored until a COLLISION
ON statement occurs. The ON COLLISION...GOSUB will then be acted
on. This can be useful to suspend collision processing whilst some
essential code is executing.

e Example

COLLISION ON
COLLISION OFF
COLLISION STOP

Command Reference Page 109

COLLISION function

e Syntax

COLLISION (object 1id)

o Effect

Provides information about object collisions that have occurred.

e Comments
There are three different flavours of call to the COLLISION function:

COLLISION (-1) returns the id of the window in which the next
collision to be processed occurred.

COLLISION (0) returns the object id of the object that was involved in
the next collision to be processed.

COLLISION (n) where n>0 is used to find out the type of collision that
involved object id n; this also removes this collision from the list of
pending events. n is normally found by using cOLLISION (0). The
value returned from COLLISION (n) is one of:

-1 Top Border

-2 Left Border

-3 Bottom Border

-4 Right Border

>0 Object id of the object with which object n collides.

HiSoft BASIC Professional maintains a queue of up to 16 events in
the same way as AmigaBASIC.

e Example

0ob3%=COLLISION (0)

IF obj%>0 THEN
sort%=COLLISION (obij%)
SELECT CASE sort%

CASE -1: 'Top Border code here
CASE -2: 'left Border code here
CASE -3: 'Bottom Border code here
CASE -4: 'Right Border code here
CASE ELSE 'hit another object
END SELECT
END IF
Page 110 Command Reference

COLOR statement

e Syntax

COLOR [foreground col] [,background_col] [,drawing_mode]

e Effect

Sets the colours to be used in the current window.

e Comments

This sets the foreground colour for the current window which is
used for drawing points, lines, text, and for filling areas. The
background colour is used for the screen background (e.g. when
using CLS).

The numbers used to identify colours can be set by using the PALETTE
statement and the Preferences tool.

The default values for the colours in the Workbench screen are:

0 blue
1 white
2 black

3 orange

If one colour parameter is omitted then this attribute remains the
same.

The optional drawing mode parameter is a HiSoft extension which
sets the drawing mode without the need to call the Graphics library
directly. Valid drawing modes are:

o JAMI
the foreground colour is "jammed" into where the graphics are
drawn. The background colour is ignored.

1 JAM2
the current pattern is used with the foreground colour is used
for ones in the pattern and the background colour for zeros.
This is the default.

2 COMPLEMENT
for each one bit that is drawn the colour is complemented; e.g.
when using 4 colours: colour O becomes colour 3, colour 1
becomes colour 2 and vice versa.

Command Reference Page 111

4 INVERSEVID and JAM1
causes the pixels surrounding text to be drawn in the
foreground colour and the actual text pixels to be left as they
were.

5 INVERSEVID and JAM2
causes text to be drawn in the background colour surrounded
by the foreground colour thus giving the same affect as "inverse
video" on old fashioned computers.

e Examples

COLOR 2,3

CLS

PRINT "fills the window with black this is in orange"
COLOR ,,5

PRINT "This is inverse video"

COLOR ,,2

PRINT "Back to normal"

Page 112 Command Reference

COMMANDS function

e Syntax
COMMANDS
o Effect

This function returns the command line of the program.

e Comments

This function enables a program to access the command line entered
if the program is run from the CLIL

Any leading spaces are removed from the command line. However,
unlike some other machines the command line is not upper-cased.

If a program is run from the workbench then the function returns a
null string, though this may change in a future release.

e Example

OPEN COMMANDS AS #1 ' a filename passed on the command
' line is used to open a file

Command Reference Page 113

COMMON SHARED statement

e Syntax

COMMON SHAREDvariable [(subscripts..)][,variable [
(subscripts..)]]..

e Effect

This statement indicates that global variables may be accessed
throughout any sub-programs .

¢ Comments
This statement is provided mainly for QuickBASIC compatibility.

It has the same effect as the DIM SHARED statement except that the
subscripts of arrays are ignored. Arrays used in this statement
should be DIMmed before the COMMON SHARED statement.

e Example

DIM glob(20)
COMMAND SHARED debug flag,glob(l)

is equivalent to

DIM SHARED debug flag,glob(20)

' both debug flag and glob() can now be accessed anywhere
in the 'program.

Page 114 Command Reference

CONST statement

e Syntax

CONST name=integer constant [,name=integer constant]..

o Effect

CONST defines symbolic constant values for use in place of integer
variables.

e Comments

Constants must be declared before they are used and their names
must be valid integer variable names. integer constant must be a
simple integer number or character constant optionally preceded by
a minus sign.

Constants can be used to make code that accesses data structures in
memory much easier to read and also to give a loose equivalent to
user enumerated types in Pascal.

Constants may be used within sub-programs and user-defined
functions without declaring them as SHARED.

e Example

DEFINT a-z

CONST white=0,black=1,red=2,green=3

COLOR red, green,black

CONST firstletter="A"%,lastletter="2"%

IF (c%>=firstletter) AND (c%<=lastletter) THEN
PRINT "It's a lower case letter"

Command Reference Page 115

COS function

¢ Syntax

COS (numeric expression)

o Effect

This function returns the cosine of the numeric expression, which
must be in radians.

e Comments

COS is normally performed in single precision. If the
numeric_expresslon is double precision, COS is performed in double
precision.

e Example
PRINT COS (0)

Result:

1

Page 116 Command Reference

CSNG function

e Syntax

CSNG (numeric expression)

e Effect

This function converts numeric expression to a single precision

number.

e Comments

CSNG has the same effect as assigning numeric expression to a

single precision variable and then using that variable.

e Example
PRINT SIN(1#)

PRINT CSNG(SIN(1#))
Result:

.8414709848078965
.841471

Command Reference

Page 117

CSRLIN function

e Syntax
CSRLIN
e Effect

This function returns the current line position of the cursor in the
current window.

e Comments

To return the current column position, use POS. The value returned
is an integer, with the top of the screen (or window) returning the
value of 1, corresponding to the LOCATE statement. If the current
output window has been closed then the value 1 is returned.

e Example

L%=CSRLIN

C%=P0OS (0)

PRINT "The cursor was on line";L%;"and in column";C%

Result (if the cursor is on line 2, column 3):

The cursor was on line 2 and in column 3

Page 118 Command Reference

CVD,CVFFP,CVI,CVL,CVS
functions

¢ Syntax

CVD (8-byte string of a double precision float)
CVFFP (4-byte string of a single precision float)
CVI (2-byte string of an integer)

CVL (4-byte string of a long integer)

CVS (4-byte string of a single precision float)

+ Effect

These functions return the internal numeric values of strings of

bytes.

e Comments

These functions are the counterparts to MKD$, MKFFP$ MKI$, MKL$
and MKS$. They do not change the value of the actual data, they only
induce BASIC to interpret them differently.

The most common use for these functions is for processing random
access files in which numeric values have been stored as strings by
the MKD$, MKFFP$, MKI$, MKL$ or MKS$ functions.

The CVFFP function is provided as a more efficient way of storing
single-precision numbers than CVS but is not compatible with files
produced or readable by the interpreter.

Command Reference Page 119

e Example

D#=9/11

I%=10

L&=42

St=5/7

PRINT D#,I%,L&,S!

OPEN "TEST.DAT" FOR OUTPUT AS #1

PRINT #1,MKDS$ (D#);MKI% (I%);MKL (L&) ,;MKS(S!)

CLOSE #1

'The converted values of the different variables are
'binary. Printing these values to screen would result in
'strange looking control characters being displayed.
OPEN "TEST.DAT" FOR INPUT AS #1

D1$=INPUTS (8, #1)

I1$=INPUTS (2, #1)

L1$=INPUTS (4, #1)

S1$=INPUTS (4, #1)

CLOSE #1

PRINT CVD(D1$),CVI(I1$),CVL(L1$),CVS(S1S)

Result:
.8181818127632141 10 42 7142857
.8181818127632141 10 42 7142857

Page 120 Command Reference

DATA statement

e Syntax

DATA constant [,next constant]..

» Effect
This statement defines the data to be used by the READ statement.

e Comments

DATA is not executed. It may contain as many constants as will fit on
a line. READ will read DATA in the order of their appearance in the
program. Multiple DATA statements will be processed as one
continuous string of constants.

Constants may be of any variable type. If necessary the data will be
converted into the correct type for the variable being READ.

It is not necessary for quotation marks to be present around string
constants in DATA unless the string contains colons, commas or
leading and trailing spaces. Numeric values may be preceded by
minus signs.

A null item in the list of constants is allowed. When read, a numeric
variable it is assigned the value O. If read as a string variable, the value
will have the null value.

READ can process DATA statements again if RESTORE is used.
Otherwise it is not possible to re-read DATA.

e Example

DATA 2.2,1.6,"Hello"
READ a,b%,c$

PRINT a;b%;c$

Result:

2.2 2 Hello

The data item 1.6 is rounded before being assigned to the integer b%,
hence the result of 2.

Command Reference Page 121

DATES function

¢ Syntax
DATES
e Effect

This function returns the current date.

e Comments

The returned value is a ten character string. The format is mm-dd-

Yyyy-

¢ Example
PRINT "Today's date is: ";DATES

Page 122

Command Reference

DECLARE statement

e Syntax
DECLARE {SUB|FUNCTION} subname [(param list)] [LIBRARY]

e Effect

Declares the parameters of a sub-program or function and indicates
that a library function is a function rather than a sub-program.

e Comments

When the LIBRARY keyword is used the parameter list is ignored;
When used for non-LIBRARY procedures the parameter list is in the
same form as with FUNCTION and SUB definitions. See Chapter 4 for

more details.

e Example

LIBRARY "graphics.library"
DECLARE FUNCTION SetSoftStyle& LIBRARY

DECLARE FUNCTION Factorial! (n%)
PRINT Factorial! (4)
FUNCTION Factorial! (n%)

END FUNCTION

Command Reference Page 123

DECR statement

e Syntax

DECR numeric variable

e Effect

Subtracts one from the specified variable

e Comments

numeric_variable may be a simple numeric variable or a numeric
array element of any type. If you wish to decrement a simple variable
X it probably makes more sense stylistically to use x=x-1 rather than
DECR X, but if you have a complicated array expression as below DECR
is the appropriate construct.

e Example
DECR A(B(I,J+5)) 'equivalent to A(B(I,3+5))=A(B(I,3+5))-1

Page 124 Command Reference

DEF FN statement

e Syntax

DEF [FN] function_name[(parameter list)]=expression
or

DEF [FN] function_name[(parameter list)]
[LOCAL variable list]
[STATIC variable list]
[SHARED variable list]

statements

[EXIT DEF]
[FNfunction name=expression]

END DEF

o Effect

Define single- or multi-line functions with parameters.

e Comments

The function name must be a unique identifier in your program. The
optional parameter list can contain any number of variable names
separated by commas, each of which may be preceded by VARPTR to
denote variable rather than value parameters (see Chapter 3 and
Chapter 4 for more details of parameter types).

The function name must be a variable name. For compatibility with
other BASICs the name should start with FN .The type returned is
determined by the same rules as for variables except that if the name
starts with FN, the FN is ignored. Thus FNfred% returns an integer.
FNjohn will normally return a single precision floating point value
unless you have used a DEFlype statement affecting the letter J. Note
that john and FNjohn are different names.

Inside DEF function definitions, variables are assumed to be global
unless you use a STATIC or LOCAL statement to override this.

Command Reference Page 125

Function definitions may be recursive. Only functions beginning
with FN may be called before they are declared. However function
definitions can not be nested inside other function or sub-program
definitions or within structured control statements.

[FN] function name=expression is used to return values from multi-
line functions. You can have more than one such statement within a
function definition.

EXIT DEF causes the current function to be exited immediately.

If you call multi-line functions from within expressions, be careful
that you do not have problems with side effects. For example

DEF FNx
3=3+1
FNx=]

END DEF

=4

PRINT FNx+j

will probably not produce the same result as

j=4
PRINT 3+FNx

because the variable j is modified when the function is called.

It is also dangerous to use input/output statements within multi-
line functions if you then call them from within another
input/output statement. For example,

PRINT 54,FNsilly, 3

DEF FNsilly

PRINT " Function silly is being called."
FNsilly=1.4

END DEF

is not sensible.

The best idea is either never to call functions in input/output or never
to input/output within functions.

Page 126 Command Reference

e Example

DEF FNahex$ (a&)="&H"+hex$ (a&)
DEF FNlonghex$ (a&)
LOCAL a$
a$=hex$ (a&)
IF LEN(a$)<8 THEN
a$=STRINGS (8-LEN (a$), "0")+a$
END IF
FNLonghex$=a$
END DEF
PRINT FNahex$ (42),FNlonghex$ (42)

Command Reference

Page 127

DEFDBL, DEFINT,
DEFLNG, DEFSNG,
DEFSTR statements

e Syntax

DEFDBL letter range [,letter range]..
DEFINT letter range [, letter range]..
DEFLNG letter range [, letter range]..
DEFSNG letter range [, letter range]..

DEFSTR letter range [,letter range]..

o Effect

These statements declare variables to be double precision, integer,
long integer, single precision, or string.

e Comments

The format of the letter rangeis 1st_letter [-2nd letter].
Allowable letters are upper- or lowercase. Any variable name
beginning with a letter specified in a DEFfype statement defines the
value of the variable: DBL for double precision, INT for integer, LNG for
long integer, SNG for single precision, or SIR for a string.

The type declaration characters #,%,&,!,$ override any DEFtype
statements.

m The variables 14, I%, I&, I!, and I$ are all different
variables with potentially different values.

Page 128 Command Reference

e Example
DEFINT a-z !

DEFINT i-n
DEFSNG a-h,o0-z ‘'

a good idea to have at the front of all
programs so you only use floating point
when needed and avoids many %s in names.

for old-fashioned FORTRAN programmers
but confusing for everyone else.

Command Reference Page 129

DIM statement

¢ Syntax

DIM [SHARED]variable [(subscripts..)]
[,variable [(subscripts..)]]..

e Effect

This statement defines the maximum values for array-variable
subscripts and allocates the necessary storage.

e Comments

The maximum subscript value for an unbIMmed array is 10. The
maximum number of dimensions in an array is 31 (which would take
up a minimum of 4 GigaBytes of memory if each index had more
than one possible element). Subscript values can be integer or long
integer expressions.

It is good programming practice to dimension all arrays even if you
require 10 elements.

The minimum value for each subscript may be set using the OPTION
BASE statement.

All arrays are dynamic and can be modified with ERASE, REDIM, and
REDIM APPEND.

When initially defined, the elements of a numeric array have the
value 0. If a string array is defined, the elements have null values.

The DIM SHARED form is used to declare arrays and ordinary
variables that can be accessed from within sub-programs without
the need for a SHARED statement in each sub-program.

Page 130 Command Reference

e Example

DIM R(15)

FOR I%=1 TO 15
R(I%)=1%
PRINT R(I%);

NEXT I%

Result:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
DIM SHARED debug flag 'debug flag can now be

15

'accessed anywhere in the program.

Command Reference

Page 131

DO...LOOP statement

¢ Syntax

DO [{WHILE|UNTIL} boolean expression]
[EXIT {LOOP|DO}]

{WEND|LOOP} [{WHILE|UNTIL} boolean expression]

e Effect

Repeats the statements within the DO...LOOP while the conditions
are true (WHILE) or false (UNTIL).

e Comments

The boolean expressions must be numeric expressions. If they
evaluate to O this is taken as false; non-zero as true.

If an EXIT LOOP or EXIT DO statement is contained within the loop
then control passes to the statement following the end of the loop. If
DO...LOOPs are nested the inner most loop is exited. If you wish to
exit an outer loop use the REPEAT loop construct. There may be a
condition at both ends of the loop if desired or none at all; this is thus
considerably more flexible than the WHILE..WEND loop.

e Examples

i=0
DO
i=1+1
PRINT 1;
LOOP UNTIL i>=10
Ori=0
DO
i1e=i+1
IF 1>10 THEN EXIT LOOP
PRINT i
LOOP

Result of both examples: 1 2 3 4 5 6 7 8 9 10

Page 132 Command Reference

END statement

e Syntax
END

END DEF

END FUNCTION
END IF

END REPEAT name
END SELECT

END SUB

¢ Effect

Ends a BASIC program, function definition, IF...THEN...ELSE block,
SELECT statement, REPEAT loop or sub-program.

¢ Comments
The END DEF statement indicates the end of a DEF FN.

END FUNCTION completes a FUNCTION definition.
END IF finishes an IF...THEN...ELSE block.

END REPEAT name ends a REPEAT loop.

END SELECT ends a SELECT CASE statement.

END SUB ends a BASIC sub-program; it is the counterpart of SUB. See
the relevant statement for more details.

END alone terminates the entire BASIC program. The END statement
may be put anywhere in the source.

Command Reference Page 133

e Example

DEF FNfactorialé& (N%)
IF N% <= 1 THEN
FNfactorialé&=1

ELSE
FNfactorial& = FNfactorialé& (N%-1)*N%
END IF
END DEF
Page 134 Command Reference

EOF function

e Syntax

EOF (channel number)

e Effect

This function tests for the end-of-file condition of channei number.

¢ Comments

-1 is returned if true; O if false. A common use for EOF is to test for the
end-of-file when writing data to a sequential file. When writing to a
random-access file, EOF returns true if the last GET was not able to
read an entire record, due to an attempt to read beyond the end-of-
file. The result returned is an integer.

e Example

OPEN "TEST.DAT" FOR INPUT AS #1

Ctr=0
WHILE NOT EOF (1)

JjunkS$=INPUTS (1, #1)

Ctr=Ctr+l
WEND
CLOSE #1
PRINT Ctr

'The length of the file in
'‘bytes can use LOF instead.

Command Reference

Page 135

ERASE statement

e Syntax

ERASE array name [, array name]..

e Effect
This statement de-allocates arrays previously defined with DIM.

e Comments

An array once ERASEd can only be accessed again after is has been
DiMmed. REDIM alone will ERASE and DIM an array together, whereas
REDIM APPEND allows an array to be extended or truncated without
losing its remaining data. This command can move existing arrays
in memory, so extreme care should be taken if used within functions
or sub-programs that are called with arrays or array elements as
variable parameters. See Chapter 4 for more details.

e Example
DIM Arr (15000)

' some processing with Arr()

ERASE Arr ' free the space used by Arrxr

Page 136 Command Reference

ERL, ERR functions

e Syntax

ERL

ERR

o Effect

These functions return error status of the current program.

e Comments

When running an error handling routine, ERR will return the error
code and ERL returns the line number in which the error occurred.

m If the error occurred on a line without a line number, the
most recent line number found in the program will be returned in
ERL.

e Examples
IF ERR=53 THEN
PRINT "File not found error on or after line “;ERL

END IF

99 PRINT "FINISHED"
RETURN
I=0
PRINT 1/1I
'After executing 1/I the value of ERL will be 99 even
'though this line number has nothing to do with the code

'executed.

Command Reference Page 137

ERROR statement

e Syntax

ERROR integer expression

e Effect

This statement simulates the occurrence of a BASIC run time error.

e Comments

ERROR is the counterpart to ERR in that integer expression is the
code returned by ERR. The user can also create his own error codes by
using error numbers not already used by BASIC.

e Example

IF Tst <= 0 THEN ERROR 99 'An error code not reserved
'by BASIC
IF ERR = 99 THEN

PRINT "Something has gone terribly wrong in SUB
TEST"

END IF

Page 138 Command Reference

EXIT statement

e Syntax
EXIT {(DEF|DO|IF|FOR|FUNCTION|LOOP|SELECT|SUB|identifier}

o Effect

Exits a function definition, BASIC sub-program or a structured
statement.

e Comments

EXIT DEF exits from a DEF function definition, whereas EXIT FUNCTION
exits from a function defined with the word FUNCTION. EXIT SUB exits
from a sub-program. EXIT DO, EXIT IF, EXIT FOR, EXIT LOOP and EXIT
SELECT cause the corresponding structured statement to be exited
immediately and execution continues with the statement after the
corresponding END.

EXIT identifier causes the named REPEAT loop to finish prematurely.

These statements are used to leave routines (e.g. as part of an
IF...THEN...END IF block). They do not define the end of the routines
definitions; END DEF, END SUB and END REPEAT identifier are required
to do this.

e Example
SUB Fred

IF Var&=12654 THEN EXIT SUB

END SUB
FOR i=1 TO max
IF a(i)=0 THEN EXIT FOR
NEXT 1
IF i>max THEN
PRINT "no zero elements"

ELSE
PRINT "first zero element is";i
END IF
Command Reference Page 139

EXP function

e Syntax

EXP (numeric_expression)

e Effect

Calculates the exponential function of the numeric expression.

e Comments

This function returns e to the power of the numeric expression. eis
the base of natural logarithms. If the numeric expression is double
precision then the result is calculated to double precision otherwise
single precision is used.

e Example
PRINT EXP (1#%#)

Result:

2.718281828459046

Page 140 Command Reference

FEXISTS function

¢ Syntax
FEXISTS (filename)

e Effect

Determines whether or not a particular file exists.

e Comments

filename should be a legal AmigaDOS filename, together with a device
specifier and sub-directory if required. The function returns -1 if the
file is found, or O if it is not.

¢ Example

f$="TEST.DAT"
IF NOT FEXISTS(f$) THEN
£$="B:\"+f$
IF NOT FEXISTS(f$) THEN
do_error "Cannot find data"
END IF
END IF
OPEN f$ FOR INPUT AS #1

Command Reference Page 141

FIELD statement

¢ Syntax ‘
FIELD [#]channel number, field width AS string variable..

e Effect

This statement allocates space for variables in a random access
buffer.

¢ Comments

The channel number is the number which was used to OPEN the file.
field width is the amount of space in the string variable to be
allocated, in characters.

The total number of bytes allocated must not exceed the record
length specified when opening the file; default record length is 128
bytes.

When a file is CLOSEd, all FIELD definitions are lost. All fielded strings
that BASIC associates with the file receive null values.

A FIELD statement does not cause data to be put into the buffer. It
associates a specified amount of space within the random-access
buffer with a variable.

w Do not use a fielded variable in an INPUT statement if it is
to remain fielded. An INPUT or other assignment will cause the
variable's pointer to refer to string space, not the random-access
buffer.

e Example

'The first definition allocates the 12 byte buffer as the
‘country code, area code and phone number; the second
'allocates the same buffer entirely to the single
'variable of Wholenum$.

OPEN "JOHN.DAT" FOR INPUT AS #1 LEN=12

FIELD #1, 2 AS CcodeS, 3 AS Acode$, 7 AS Numbers$

FIELD #1, 12 AS Wholenum$

Page 142 Command Reference

FILES statement

¢ Syntax
FILES [file spec]

s Effect

This statement lists the names of files in the specified directory on a
disk.

e Comments

The rile spec must be a string conforming to AmigaDOS
conventions and may contain a device a number and/or a pathname.
and optionally a filename. Please note that for compatibility with the
interpreter and to keep the run-time routine compact, wildcards are
not supported.

e Example

FILES "DFO:DEVPAC" 'This produces a list of all
'the files in the DEVPAC
'directory of the disk in
'drive DFO:

Command Reference Page 143

FILL statement

¢ Syntax

FILL x_start,y_start

o Effect

This statement fills enclosed shapes already drawn on the screen..

¢ Comments

The pixel in the current output window specified by x_start and
y_start is plotted and the pattern “spreads out' to {ill the whole of the
shape. The current fill color, style, and index, as selected by the
COLOR statement aare used.

¢ Example
COLOR 1,1,1,0,0,

BAR 70,40,160,120 'hollow box
ELLIPSE 150,100,70,50 ‘and ellipse

COLOR 1,1,1,1,4

Fill 71,50

Page 144 Command Reference

FIX function

¢ Syntax

FIX (numeric expression)

e Effect

This function produces the truncated integer part of the
numeric_expression.

e Comments

The difference between FIX and INT is that if the numeric expression
is negative, FIX will return the first negative integer greater than
itself, whereas INT returns the first negative integer less than the
numeric expression. The type of the result will be the same as the
type of numeri C_expression.

e Example

PRINT FIX(1.5)
PRINT FIX(-1.5)

Result:

1
-1

Command Reference Page 145

FOR...NEXT statement

e Syntax

FOR counter = start TO end [STEP increment]

NEXT [counter][,counter]..

e Effect

This statement executes a series of instructions in a loop a specified
number of times.

e Comments

counter is a variable used as the loop counter

start is the value of counter at the beginning of the loop

end is the value of counter upon which the loop ceases to
execute

increment is the value by which counter is incremented each

time the loop is executed

All four values may be either integers, long integers, single or double
precision floats.

The program lines between FOR and NEXT are executed repeatedly.
counter is adjusted by increment after execution of each iteration of
the loop. counter is then compared with end. If counter is greater
than end, execution of the program continues on the line after NEXT.

Note that counter is updated before the comparison is made.
Unless STEP increment is specified, the increment value is one. If
increment is negative, end must be less than start otherwise the

loop will not be executed.

If start is less than end and increment is positive then the loop isn't
executed.

Page 146 Command Reference

FOR...NEXT loops may be nested, provided that each loop has a unique
counter variable. The NEXT statement for the inside loop must appear
before the NEXT statement for the outside loop.

A NEXT statement of the format NEXT x,vy, z is the same as

NEXT x
NEXT y
NEXT z

A NEXT statement without specifying counter will match the most
recent FOR statement.

FOR...NEXT loops may finish prematurely via the use of EXIT or GOTO
statements.

m The sum of end and increment (even of increment isn't
explicitly specified, and is therefore one} must never exceed the range
of counter's variable type otherwise overflow results.

Optimisation: A FOR.NEXT loop executes fastest when counter is a
integer and start, end and increment are constants. If any of the
last three values must be variables, they should be made integers for
maximum speed.

¢ Example

DEFINT I
FOR I ONE = 1 TO 5
FOR I TWO = 3 TO 11 STEP 2
FOR I THREE = 0 TO -15 STEP -1

NEXT I THREE,I TWO,I ONE

Command Reference Page 147

FRE function

¢ Syntax

FRE (numeric expression)

FRE (string expression)

e Effect

This function returns the size of free heap space or AmigaDOS free
memory.

e Comments

FRE returns the following values:

Different values of numeric expression give different results as
follows:

-1 the number of total free bytes in the system .
-2 the number of bytes of stack space that are not used.
-3 gives the largest free block of memory
any other value
free space on the BASIC heap

For a string expression, the size, in bytes, of contiguous free heap
space after a garbage collect is returned. The heap is the area of
memory used by a BASIC program for storing string variables and
arrays.

e Example
PRINT FRE(0)

PRINT FRE("") 'This is a null string
PRINT FRE(-1)

Result:

127534
154293
4096

Page 148 Command Reference

GET file 1/O statement

e Syntax

GET [#]channel number|, record number]

¢ Effect

This statement reads a record from a random-access disk file into a
random access file buffer.

¢ Comments

The channel number is the number under which the file was opened.
If record number is omitted, the next record after the last GET is read.

EOF is useful to use in conjunction with GET to check if GET was
beyond the actual end of the file.

e Example

'This routine prints the names and ages of the first 10
'people listed in AGES.DAT

DEFINT I

OPEN "AGES.DAT" FOR RANDOM AS #1

FIELD #1, 10 AS Fname$, 10 AS Lname$, 2 AS Age$

FOR I =1 TO 10

GET #1,1I 'Read the first 10 entries
in AGES

PRINT Fname$;" ";Lname$; " is ";Age$;" years old.*"
NEXT I
CLOSE #1
Command Reference Page 149

GET graphics statement

e Syntax
GET (x1,yl)-(x2,y2),array name[(index expression...)]
e Effect

This statement stores binary images from any part of the current
output window.

e Comments

GET transfers a rectangular image defined by (x1, y1)-(x2, y2)into
the array specified by array name. PUT is the counterpart statement;
it transfers the image from the array to the screen.

(x1,y1)-(x2,y2) represent diagonally opposite corners of the
rectangle on the screen.

The size (in bytes) of an array needed to store an image is
2*p* (y2-yl+1l) * [(x2-x1)\16+1] + 6

where p is the number of planes of screen memory, 2 is the default..
For example to store an image of (10,20)-(100,200) in normal
resolution would require 2*2*181*6+6=4350 bytes, or an integer
array of 2175 elements.

If an integer array p% () is used in a GET statement then

p%(0) contains the width of the image
p% (1) contains the height of the image
p% (2) contains the number of planes of the image.

The form of array used by HiSoft BASIC Professional is the same as
that used by AmigaBASIC. However this is different to HiSoft BASIC
Professional on the Atari ST.

Note that a multi-dimensional array may be used, making it easy to
switch between different images.

Page 150 Command Reference

e Example

DIM p%(2174)

AREA 30,30: AREA 30,60: AREA 60,30:
GET (10,20)-(100,200),p%

PUT (30,40),p%

AREAFILL

Command Reference

Page 151

GOSUB...RETURN
statements

¢ Syntax
GOSUB {line numberl|line labell}

RETURN {line numberZ2|line labelZl}

e Effect

These statements branch to, and return from, a subroutine,
respectively.

e Comments

line numberl or line labell identifies the first line of the
subroutine to which GosuB branches. You can also RETURN from a
subroutine to line number2 or line label2 and not necessarily to
the line after the GOSUB call. This is not generally recommended as it
can lead to very unreadable code.

A subroutine may contain more than one RETURN statement. A
RETURN without l1ine number2 or line label2 branches back to the
line after the GOSUB that called the subroutine.

m We suggest that you use CALLs to SUB...END sub-
programs rather than GOSUB...RETURN. SUB...END routines are
much more flexible in that parameters can be passed to them and
they can support local variables.

HiSoft BASIC Professional does not support GOSUB to a sub-
program.

Page 152 Command Reference

¢ Example

I =0

PRINT "Main Loop"

GOSUB Loopl

Back In Main:

PRINT "Back in Main Loop"
Is =1

GOSUB Loop2

PRINT "Done.

END

Loopl:
PRINT "In 1lst subroutine"
RETURN Loop2
Loop2:
PRINT "In 2nd subroutine”
IF I% = 0 THEN
RETURN Back_In Main
ELSE
RETURN
END IF

Result:

Main Loop

In 1lst subroutine
In 2nd subroutine
Back in Main Loop
In 2nd subroutine
Done

Command Reference

Page 153

GOTO statement

e Syntax
GOTO {line number|line label}

¢ Effect

This statement causes program execution to unconditionally jump
to the line specified.

e Comments

GOTOs must not be used to enter or leave functions, subprograms or
subroutines. GOTOs can be used within these structures if
necessary.

w We suggest the use of structured control statements
such as IF...THEN...ELSE and DO...LOOP for enhanced readability of the
source and easier debugging.

e Example

GOTO Label
'The program never gets here

Label:
PRINT "The program resumes eXecution here"

Page 154 Command Reference

HEXS$ function

e Syntax

HEXS(numeric_expression)

o Effect

This function returns a string that represents the hexadecimal value
of the numeric expression.

e Comments

The numeric_expression is rounded before being evaluated by HEXS.
If the parameter is an integer then the resulting string will be from 1
to 4 characters in length, and if it is a long integer then the result
may be up to 8 characters in length.

e Example

'This routine prints the numbers 1 to 15 in hexadecimal
'notation
DEFINT I
FOR I=1 TO 15
PRINT HEXS$(I);
NEXT I

Result:

123456789ABCDEF

Command Reference Page 155

IF...THEN...ELSE

statement

e Syntax

IF boolean expression THEN
statement 1
[statement 2]

[ELSEIF boolean expression THEN
statement 3
[statement _4]]

[ELSE

statement 5
[statement 6]]
END IF
OR

IF boolean expression THEN statement 1 [ELSE statement 2]

o Effect

This statement block allows conditional execution or branching,
based on the evaluation of a Boolean expression.

e Comments

In the single-line variation of IF...THEN...ELSE, statement 1 is executed
if boolean expression evaluates to true. If boolean expressionis
false, then statement 2 is executed. If ELSE is not present and
boolean_ expression is false, the program resumes execution on the
line after the IF...THEN statement.

Page 156 Command Reference

e Example

S!=RND
IF S!<0.5 THEN

PRINT "S! is smaller than 0.5"
ELSEIF S!>0.5 THEN

PRINT "S! is larger than 0.5"
ELSE

PRINT "S! 1s equal to 0.5"
END IF

Command Reference

Page 157

INCR statement

e Syntax

INCR numeric-variable

e Effect

This statement adds one to the numeric variable.

e Comments

The numeric variable may be a simple or array variable of any
numeric type, the value of which is incremented by one.

e Example

INCR a(i, 3) 'equivalent to a(i,Jj)=a(i, j)+1

Page 158

Command Reference

INKEYS function

e Syntax
INKEYS
e Effect

This function reads a character from the keyboard without echo, if
one is available.

¢ Comments

INKEYS$ returns either a null, or one byte string containing the
character read from the keyboard.

A null string result (i.e. ") means no key was pressed.

A one-character string means a normal key was pressed, and
contains the ASCII value of it. The following keys return special
values:

F1 128 Backspace 8
F2 129 Return 13
F3 130 T 28
F4 131 { 29
F5 132 - 30
F6 133 « 31
F7 134 Del 127
F8 135 Help 139
F9 136

F10 137

Note that the Amiga keys have no effect on the values returned by
INKEYS.

Command Reference Page 159

¢ Example

'This block provides a quicker way of processing user
'input, if only one character is needed.
PRINT "Enter your choice (1 or 2)"

DO
a$=INKEY$
SELECT CASE a$
CASE ="1*
CALL One: EXIT LOOP
CASE ="2"
CALL Two: EXIT LOOP
END SELECT
LOOP
Page 160 Command Reference

INPUT statement

¢ Syntax
INPUT [;] ["prompt"{;|,}] variable list
e Effect

This statement prompts the user for input which is assigned to
variable_list.

¢ Comments

INPUT causes program execution to halt and await user data. If a
prompt is included, INPUT will first print it and then a question mark.
If the question mark is to be suppressed, a comma should be put
after prompt. If the cursor is to stay on the same line even after user
presses enter (i.e. not echo the CR-LF), a semi-colon should be put
immediately after the INPUT statement.

e Example

INPUT "The square of",x%
PRINT "is"; (X%*x%)

Result:

The square of 2 is 4

Command Reference Page 161

INPUT# statement

e Syntax

INPUT #channel number,variable list

o Effect

This statement reads data from the device or file specified by
channel number and assigns it to variable list.

¢ Comments
The channel number is the number specified when OPENing the file.

The data read must be numeric for numeric variables and leading
carriage returns, line feeds, and spaces are ignored; the first
character that is not one of the three preceding types is considered
to be the beginning of a number. A number is terminated by space,
carriage-return or a line feeds. If end-of-file is reached while a value is
being read, the variable is terminated.

e Example
INPUT #1, Str$, Int%, Lng ints&, Sing!, Dub float#

Page 162 Command Reference

INPUTS statement

e Syntax
INPUTS (n[, [#] channel number])

o Effect

This statement reads n characters from the specified channel.

e Comments

If channel number is omitted, the characters are read from the
keyboard without echo. This can be used for input similar to INKEY$,
but with a fixed amount of characters to be processed from the
keyboard. n may be an integer or long integer. Thus assuming there
is sufficient memory available an entire file can be read with one use
of this function.

e Example

'This program reads the first 512 bytes of a file into the
' string variable first$

OPEN "a.data" FOR INPUT AS #1

first$=INPUTS (512, #1))

CLOSE #1

Command Reference Page 163

INSTR function

e Syntax

INSTR{([start,]1st string,2nd string)

o Effect

This function returns the location of the first occurrence of
2nd_stringin 1st string.

e Comments

start is an optional offset for the beginning of the search within
lst_string. start may be either an integer or a long integer.The
strings may be either string-variables, string-literals, or string
expressions.

INSTR will return a value depending on the following conditions:

If 2nd_stringis found in Ist_string the location where it was
found is returned.

If start is a value larger than the length of 1st string, Ois
returned.

If the 1st stringis a null string, O is returned.

If 2nd string cannot be found, O is returned. If 2nd stringisa
null string, start is returned; if start was not specified, 1 is
returned.

m :As strings in HiSoft BASIC Professional have no length
limits this function returns a long integer.

e Example

'This routine parses the command line for a space to
'find the first parameter passed to the program.
I%=INSTR(COMMANDS, " ")

IF I%=0 THEN I%=LEN (COMMANDS)

PRINT "The 1lst parameter passed is: ";LEFT$(COMMANDS, I%)

Page 164 Command Reference

INT function

e Syntax

INT (numeric expression)

o Effect

This function returns the largest integer less than or equal to the
numeric expression.

e Comments

The value returned is the same type as numeric_expression. If you
need to find the nearest long integer (i.e. greater than 32767) to a
numeric expression use the CLNG function.

e Example

'This example illustrates the differences beﬁween the
'functions CINT, FIX and INT.

PRINT CINT(1.5),CINT(-1.5)

PRINT FIX(1.5),FIX(-1.5)

PRINT INT(1.5),INT(-1.5)

Result:

2 -2

1 -1

1 -2

Command Reference Page 165

KILL statement

e Syntax
KILL file spec

e Effect

All files fitting the description of file spec are deleted from disk.

e Comments

The file spec must conform to the AmigaDOS format. KILL will also

delete any icon file associated with file spec.

e Example
KILL "DFO:TEMP"

Page 166

Command Reference

[LBOUND function

e Syntax

LBOUND (array(,dimension])

e Effect

This function returns the smallest available subscript of the specified
array and optionally of a specific dimension.

e Comments

A common use of LBOUND is to determine the size of an array,
together with UBOUND. array is the array to be checked, whereas
dimension is the number of the dimension to be checked.

In fact because OPTION BASE is used for all the subscripts of the
array they will all have the same lower bound. However it may be
possible to explicitly set the lower bound in the future.

e Example
DIM Levels(X,Y,Z2)

PRINT LBOUND (Levels,2)'This will return the lowest
'bound for the Y dimension
'which is 0 unless otherwise
'defined with OPTION BASE

Command Reference Page 167

LCASES function

e Syntax

LCASES (string expression)

e Effect

This function returns a string with every alphabetic character in
lower case.

e Comments

Any characters in the range 'A' to 'z’ inclusive are converted to 'a' to 'z
as required. All other characters are left alone.

e Example

PRINT "Do you wish to format your hard disk? Y/N";
DO a$=INKEYS$
UNTIL a$<>""
IF LCASE(a$)="y" THEN
do format "DHO:"
ELSE
PRINT "Very wise"
END IF

Page 168 Command Reference

LEFTS function

¢ Syntax

LEFTS (string expression,n)

e Effect

This function returns a string made up of the leftmost n characters
of string expression.

e Comments

n is a long integer argument as there is no string length limit in
HiSoft BASIC Professional. If n = O then a null string is returned. If n
is greater than the number of characters in string expression, the
entire string is returned.

string expression may be a string variable, a string literal or a
string constant.

e Example

String$="HiSoft BASIC Professional"
PRINT LEFTS(String$,6) '

Result:

HiSoft

Command Reference : Page 169

LEN function

e Syntax

LEN (string expression)

s Effect

This function returns the number of characters in
string expression.

e Comments

string expression may be a string variable, a string literal or a
string constant. This can return numbers greater than 32767 so be
careful if assigning to integers - use long integers instead.

e Example

Another String$="Devpac Amiga by HiSoft"
PRINT LEN{Another String$)

Result:

22

Page 170 Command Reference

LET statement

e Syntax

[LET] variable = expression

e Effect

Assigns variable the value of expression.

e Comments

LET is entirely optional and unnecessary; the equals sign is sufficient

to assign values to variables.

e Example

LET profit=income-sales-tax

is the same as

profit=income-sales-tax

Command Reference

Page 171

LIBRARY statement

e Syntax

LIBRARY library name(,another library namej..

LIBRARY CLOSE

e Effect

This statement defines which Amiga libraries are to be used by the
program and opens that library. LIBRARY CLOSE is used to close all
open libraries.

e Comments

To open a library you will need a .bmap file when compiling your
program. When your program is running the corresponding .library
file is required if the library is not built-in to the ROM.

HiSoft BASIC Professional uses the same format for .bmap files as

AmigaBASIC. See your AmigaBASIC manual for details. If a drive or
directory specifier is used then the compiler will look for the .bmap
file there; if one is not then the current directory and then the Libs:
directory will be searched. The .name of the .bmap file is produced by
removing .library from the end of the library name and replacing it
with .bmap.

Any drive or directory name will not be used when the library is
opened by the program when it runs. Disk-loaded libraries are
normally stored in the Libs: directory.

e Example
LIBRARY "diskfont.library"

Page 172 Command Reference

LINE statement

e Syntax
LINE [[STEP] (x1,y1)] - [STEP] (x2,y2)[,colour], [b[£f]]
» Effect

Draws a line, box or filled box in the current window.

e Comments

In the simplest case this statements draws a line between the point
(x1,y1) and (x1,y2). If the co-ordinates (x1,y1) are omitted then the
line is drawn from the current graphics drawing position.

If the sTEP keyword is used then the following co-ordinate is treated
as relative to the current graphics drawing position rather than
relative to the current window.

The colour parameter specifies the colour that the line will be drawn
in; if it is omitted then the current foreground colour is used (this
can be set using the COLOR statement).

If the final parameter is , B or ,b then an empty box with the co-
ordinates giving the opposite corners of the box. If the final
parameter is , BF then a filled box is drawn; again with the co-
ordinates giving the opposite corners.

¢ Examples

LINE (100,100) TO (150,100)

' the above draws a horizontal line from (100,100) to
(150,100)

LINE (100,100} TO STEP (50,0)
' a slightly easier way to achleve the same thing.
LINE -STEP (20,20),2

'draws a diagonal line from the current position in colour
2

LINE (50,50)- STEP (40,0)

LINE -STEP (0, 30)

LINE -STEP (-40,-30)

' draw a triangle with corners (50,50), (90,50), (90,80)

Command Reference Page 173

LINE STEP (0,0) - (60,60),,b

‘draws a box with corners of (60,60) and the current
graphics position.

FOR i=1 TO 3
LINE (i*20,1i*20)- STEP (15,15), 1i,bf
NEXT 1
' draws 3 filled boxes in three different colours.

Page 174 Command Reference

LINE INPUT statement

e Syntax
LINE INPUT([;] (["prompt";] string variable
e Effect

This statement assigns an entire line of input to string variable
while ignoring delimiters {such as commas).

e Comments

The prompt is printed before input is awaited. A question mark will
not be displayed unless it is part of prompt. If LINE INPUT is
immediately followed by a semi-colon, the CR-LF marking the end of
the input line will not be echoed to the screen.

LINE INPUT is more useful if you need to enter strings with commas,
quotation marks or spaces in them.

e Example
LINE INPUT "Enter command:“,Com$

Command Reference Page 175

LINE INPUT# statement

¢ Syntax
LINE INPUT #channel number,string variable

e Effect

This statement reads a sequence of characters terminated by a CR
from the device or file specified by channel number and assigns it to
string variable.

e Comments

This statement will read a sequence up to, and including, a CR, and
return. A subsequent LINE INPUT# will begin reading the second
sequence after the CR.

e Example

'This routine reads a file in which 5 records that are
'delimited by CRs are kept.
DIM Record$ (5)
OPEN "BASE.LST" FOR INPUT AS #1
I%=0
WHILE NOT EOF (1)
I%=I%+1
LINE INPUT #1,RecordS$(I%)
WEND
CLOSE #1

Page 176 Command Reference

LOC function

e Syntax

LOC (channel number)

e Effect

This function returns the program's current position within an
OPENed file.

e Comments

The value returned is a long integer. When used with random-access
files, LOC returns the number of the last record read or written to
the file. For sequential files opened for OUTPUT, INPUT or APPEND the
value returned is the number of bytes written or read divided by 128.

e Example

SUB WriteBlock
STATIC remember%

remember%=LOC (2) 'get current position
LSET a$=MKIS (remember%)
PUT #2,1 'use record 1 to hold last
'updated record number
PUT #2, remember 'and write actual record
END SUB
Command Reference Page 177

LOCAL statement

e Syntax
LOCAL variable list

e Effect

This statement declares variables as local to function definitions and
sub-programs and creates a new variable each time the function or
sub-program is left and re-entered.

e Comments

This statement can be used only within function definitions and
sub-programs.

Variables in function definitions usually are global or STATIC in sub-
programs. The LOCAL statement ensures that a new variable is
created every time a recursive sub-program or function is called. See
Chapter 4 for more details.

e Example

test=10

PRINT FNeasy, test

DEF FNeasy

LOCAL test 'without this the global
test=5 'test would be changed here
FNeasy=1/test

END SUB

Page 178 Command Reference

LOCATE statement

e Syntax

LOCATE [row] [,column [,cursor]]

o Effect

This statement puts the cursor on column and row specified; it can
also enable or disable the cursor.

¢ Comments
If any parameter is omitted, LOCATE has no effect on that particular
value.

column is the column number of the screen where the cursor is to be
placed. Valid numbers are 1-62 in 60 column mode, 1-77 in 80
column mode.

row is the row number on the screen where the cursor is to be placed.
Valid numbers are 1-25.

The cursor parameter is a HiSoft extension which if it is 0, the cursor
is disabled; if it is 1 then the cursor is enabled.

e Example

LOCATE 1,1,0 'this line moves the cursor to
'the upper left corner of the
'screen and disables the cursor.

Command Reference Page 179

LOF function

e Syntax

LOF (channel number)

e Effect
This function returns the length of the file specified by

channel number.

e Comments

The value returned for the open file is a long integer.

e Example

'This routine opens a file, checks its length, allocates
'enough memory, and reads it in its entirety.

OPEN "LOTSA.INF" FOR INPUT AS #1

Length&=LOF (1)

FileBuf$=INPUTS (Lengthé&, #1)

CLOSE #1

Page 180 Command Reference

LOG, LOGI10, LOG2
functions

¢ Syntax

LOG (numeric_expression)
LOG10 (numeri c_expressi on)

LOG2 (numeric _expression)

¢ Effect

LOG returns the natural logarithm (base €) of numeric expression.
LOG10 returns the logarithm base 10 of numeric expression.

LOG2 returns the logarithm base 2 of numeric expression.

e Comments

numeric expression must be greater than 0.
e is approximately 2.718281828459046

All logarithmic functions are evaluated with single-precision
accuracy by default. If the numeric_expression is a double-precision
number, LOGlype will calculated in double-precision.

e Example
PRINT LOG10(10),L0OG10(5)

Command Reference Page 181

LPOS function

e Syntax
LPOS (argument)

e Effect

This function returns the position of the printer head.

¢ Comments

The actual physical position of the printer head is not necessarily
returned, as tabs are not expanded. The value returned is the
position within the printer buffer starting at 1.

argument is a dummy parameter.

e Example

'This routine continues printing strings until the
'printer head reaches the 50th column
WHILE LPOS(0)<50
I%=I%+1
LPRINT String$(I%)
WEND

Page 182 Command Reference

LPRINT, LPRINT USING
statements

¢ Syntax

LPRINT [expression 1ist][{;],}]

LPRINT USING format string; expression list [{;]|,}]

» Effect
These statements print data through the current printer port.

e Comments

LPRINT and LPRINT USING are analogous to PRINT and PRINT USING,
except that the data output is via the current printer device, selected
with the Preferences tool.

e Example

LPRINT CHRS$(12); 'This line send a form-feed to
'‘the device connected to the
'printer port.

Command Reference Page 183

LSET statement

e Syntax

LSET string variable = string expression

* Effect
Left-justify a string variable, normally used for FIELDed variables.

e Comments

LSET left-justifies a string variable by padding with spaces on the
right up to its length. This is normally used for FIELDed string
variables, but can be used with ordinary string variables for
formatting output. RSET is similar except that it right-justifies.

e Example

FIELD #2,20 AS a$
LSET a$=FNGetData$ (10)
PUT #2

Page 184 Command Reference

MENU statement

e Syntax
MENU title id,item id,state[,name_string]
MENU RESET

MENU {ON|OFF | STOP}

o Effect

This statement adds and changes the text and state of menu items
and titles. MENU RESET removes any custom menu items. The MENU
ON, MENU OFF and MENU STOP statements control menu event
checking.

e Comments

title id specifies which menu is to be modified with possible values
of 1 to 10. 1 is the leftmost menu.

item 1d specifies which item on this menu is to be modified unless
its value is O when it indicates that the title is to be changed.

state may be one of

0 disable menu or title
1 enable menu or title
2 enable the item and place a tick mark beside it.

If the name_strings parameter is present then this sets the name of
the menu item or title to be that string. If you intend to use a state of
2 then you should ensure that the name strings for this item starts
with two spaces.

To find out which menu item has been selected you may either wait
for a menu to be pressed using the MENU function (see below) or use
the ON MENU...GOSUB statement.

MENU ON should be used to enable menu event checking. This will
cause ON MENU statements to be acted on whenever an item is
clicked.

After a MENU OFF statement is executed menu clicks will be ignored
{except in the value returned by the MENU function).

Command Reference Page 185

MENU STOP causes menu events to be stored until a MENU ON
statement occurs. The ON MENU...GOSUB will then be acted on. This
can be useful to suspend menu processing whilst some essential
code is executing.

See ON MENU...GOSUB for a further example.

e Example

MENU 1,0,1,"Project"
MENU 1,1,1,"Load"
MENU 1,2,1,"Save"

MENU 2,0,1,"Search"

MENU 2,1,1, " Find"

MENU 1,2,0 ' disables the Save item

MENU 2,1, 2 ' places a tick mark by the Find item

MENU 2,1,1 ' removes the tick again.

Page 186 Command Reference

MENU function

¢ Syntax
MENU (n)
e Effect

This function returns the title and item of the last menu item
selected.

e Comments

MENU (0) will normally return O unless a menu item has been selected
since it was last called, in which case the title number (from 1 to 10)
is returned. Subsequent MENU (0) calls will return O again until
another item is selected.

MENU (1) returns the number (from 1 to 19) of the last menu item
selected.

e Example

MENU 1,0,1,"Project"
MENU 1,1,1,"Load"
MENU 1,2,1,"Save"
MENU 1,3,1,"Quit"

MENU 2,0,1,"Search"
MENU 2,1,1, " Find"

DO
DO
title%=menu (0)
LOOP WHILE title%=0
PRINT "Title ";title%;" item:;MENU(1)
LOOP UNTIL title%=1 AND MENU(1)=3 'Quit

Command Reference Page 187

MIDS$ function

e Syntax

MIDS (string expression,nl[,length])

¢ Effect

This statement returns length characters from string expression
starting at the nth character.

e Comments

If there are fewer than length characters in string expression, or if
there are fewer than length characters to the right of the nth
character, all characters following the nth character are returned. If
there are less than n characters in string expression, a null string
is returned.

e Example

Sentence$="This 1s HiSoft BASIC Professional™
PRINT MIDS (Sentence$, 9, 6)

Result:

HiSoft

Page 188 Command Reference

MIDS statement

¢ Syntax

MIDS (string variable,n[, length])=string expression

o Effect
Modifies part of a string variable.

¢ Comments

The characters of string variable starting at position n are
modified to be the characters of the string expression.If lengthis
specified then only this number of characters are replaced; otherwise
the whole of string expression is used.

MID$ cannot be used to change the length a string and as a result is
more efficient than an equivalent assignment statement. The
string variable may be a simple string variable or an element of a
string array. Both n and length may be integers or long integers.

e Example

Sentence$="This is HiSoft BASIC Professional"
MIDS (Sentence$,1l)=" It was"

PRINT Sentence$

Result:

It was HiSoft BASIC Professional

Command Reference Page 189

MKDIR statement

e Syntax
MKDIR pathname

o Effect

This statement creates the sub-directory as specified by pathname.

¢ Comments
pathname must conform to the AmigaDOS format conventions.

MKDIR can also be used with relative as well as absolute pat hnames.
For a detailed explanation of this, please refer to CHDIR.

e Example

MKDIR ":ONE" ‘an absolute pathname
CHDIR " :ONE"
MKDIR "TwWO" '‘this 1s a relative pathname;

'1it creates :ONE/TWO

Page 190 Command Reference

MKI$,MKFFP$,MKLS,MKSS$,MKD$
functions

¢ Syntax

MKIS$ (integer expression)

MKFFPS (single precision expression)
MKLS (1ong integer expression)

MKS$ (single precision expression)

MKD$ (double precision expression)

e Effect

These functions convert numeric data of the expressions into
strings.

e Comments

These functions take a numeric value and store it in a string variable.
There is no conversion into human readable form. These functions
are often used before outputting numeric data via LSET and RSET; both
of these are only able to process strings. It is vital to note that these
functions are not interchangeable with STR$. A numeric value
processed by a MK#ype$ function and then printed will be a binary
representation of the number.

Although HiSoft BASIC Professional uses a different format to the
interpreter for single-precision variables, this is transparent to the
MKS$ and CVS functions, though a loss of precision (and perhaps
range) may occur during the conversion. To avoid this the MKFFP$
and CVFFP functions may be used, though not on data files which
have been written or intend to be read by the interpreter.

Command Reference Page 191

e Example
OPEN "FLD.DAT" AS #1

FIELD #1, 4 AS Lints$ ‘defines a field

Longint&=65536
LSET Lint$=MKL$ (Longinté&)

'puts the string value into
'the record

PUT #1,1 'record is written to file
CLOSE #1
Page 192 Command Reference

Q.Q.O....OQ......‘...QQ.QQQ...QQ.C.OQCCQ.Q

MOUSE function

¢ Syntax

MOUSE (attribute)

o Effect

Read the current position of the mouse and the status of the left
mouse button.

e Comments

The value returned is an integer, the interpretation of which depends
on the attribute:

0 Status of left mouse button:

0 The left mouse button is not down and has not been
since the last MOUSE (0) call.

1 The left button is not currently down but there has
been a single click since the last call to MOUSE (0).

2 The left button is currently down but there has been

a double-click since the last call to MOUSE (0).

-1 The user is dragging with the mouse. Strictly the
button is currently down and has been pressed
once.

-2 The user is holding the left button down having
double-clicked.

1 Current mouse X position.

2 Current mouse Y position.

3 Mouse X position when the last click occurred, before
MOUSE (0) was called.

4 Mouse Y position when the last click occurred, before
MOUSE (0) was called.

5 Mouse X position when the button was released, if the

button was up when MOUSE (0) was called. If the button was
down then MOUSE (5) returns the X position when MOUSE (0)
was called.

6 Mouse Y position when the button was released, if the
button was up when MOUSE (0) was called. If the button was
down then MOUSE (6) returns the Y position when MOUSE (0)
was called.

Command Reference Page 193

e Example

DO 'plot points with left button
IF MOUSE (0)<>0 THEN PSET (MOUSE (1), MOUSE (2))
LOOP UNTIL INKEYS$=CHRS (27) 'until Esc pressed
Page 194 Command Reference

0000000000000 000000000000000O00O00C0CO0CCGOCRCOCKOOOYTS

MOUSE statement

e Syntax
MOUSE {ON|OFF|STOP}

e Effect

Modifies the mouse event trapping to change the effect of
ON...MOUSE statements.

e Comments

MOUSE ON should be used to enable mouse event checking. This will
cause ON MOUSE statements to be acted on whenever the user clicks
with the left mouse button.

After a MOUSE OFF statement is executed menu clicks will be ignored
(except in the value returned by the MOUSE function).

MOUSE STOP causes mouse events to be stored until a MOUSE ON
statement occurs. The ON MOUSE...GOSUB will then be acted on. This
can be useful to suspend menu processing whilst some essential
code is executing.

e Example

MOUSE STOP
MOUSE ON act on MOUSE events since MOUSE STOP
Command Reference Page 195

NAME statement

e Syntax

NAME old filename AS new filename

e Effect

This statement renames the file specified by old filename to
new_filename. It will also rename any icon files.

e Comments

Both file specifications must conform to the AmigaDOS format. It is
possible to move files between directories by renaming them. Both
arguments are string expressions.

e Example
NAME "AFILE.BAS" AS "ANOTHER.BAS"

Page 196 Command Reference

OBJECT statements and functions

¢ Syntax

OBJECT.AX object id,value

OBJECT.AY object id,value

OBJECT.CLIP (x1,yl)-(x2,y2)
OBJECT.CLOSE [object id[,object id..]]
OBJECT.HIT object id, [MeMasKk] [, HitMask]
OBJECT.ON object id[,object id..]]
OBJECT.OFF object id[,object id..]]
OBJECT.PLANES object 1id[,plane pick][,plane on off]
OBJECT.PRIORITY object id,value
OBJECT.SHAPE object_idl, {string expression|object 1d2}
OBJECT.START object id[,object id..]]
OBJECT.STOP object id[,object id..]]
OBJECT.VX object id,value

OBJECT.VY object_id,value

OBJECT.VX (object id)

OBJECT.VY (object id)

OBJECT.X object id,value

OBJECT.Y object_id,value

OBJECT.X (object 1id)

OBJECT.Y (object 1id)

e Effect

These are the AmigaBASIC compatible object (or sprite) statements
and functions. These are described in detail in the AmigaBASIC
manual.

Command Reference Page 197

OCTS$ function

e Syntax

OCTS$ (numeri ¢ _expression)

e Effect

This function returns a string which is the octal representation of
numeric_expression.

¢ Comments

OCTS$ returns the representation of the integer part of
numeric_expression. If the expression is an integer then the
resulting string will be from 1 to 6 characters in length, but if it is a
long integer then it can be up to 11 characters long.

e Example
PRINT OCTS (8)

Result:

10

Page 198 Command Reference

ON...BREAK statement

e Syntax
ON BREAK GOSUB {linenumber|linelabel| 0}

o Effect

Determines the subroutine that is called when Ctrl1-C or A. are
pressed.

¢ Comments
ON BREAK GOTO 0 causes HiSoft BASIC Professional to process break
events itself.

BREAK ON should be used to enable break event processing,

e Example

ON BREAK GOSUBR BreakHandler
BREAK ON

BreakHandler:
RETURN ' does nothing and thus ignores]
' the break keys.

Command Reference Page 199

ON...COLLISION statement

e Syntax
ON COLLISION GOSUB {linenumber|linelabel]|0}

e Effect

Determines the subroutine that is called when an object collides with
the border or another object.

e Comments

ON COLLISION GOTO 0 causes HiSoft BASIC Professional to ignore
collision events.

COLLISION ON should be used to enable collision event processing.

e Example
ON COLLISION GOSUB CollisionHandler

Page 200 Command Reference

ON...ERROR statement

¢ Syntax
ON ERROR GOTO {linenumber|linelabell| 0}

¢ Effect

Enable error handling and specify error handling routine.

e Comments

This command allows you to trap run-time errors such as overflow
or disk full and pass control to a specific BASIC line if any errors
occur. The error handler must be at the main level of your program -
it cannot be within a sub-program or function.

If a line number of 0 is specified, any error handling is disabled and
subsequent errors will abort program execution in the normal way. If
ON ERROR GOTO 0 is specified within an error handler it will cause
the original error message to be printed and program execution will
be halted.

If you wish program execution to continue after an error you should
use the RESUME statement.

Use of ON ERROR in a program causes a larger program size and
slightly slower execution speed due to the saving of extra
information while a program runs.

e Example

ON ERROR GOTO handler
OPEN "DATA.INF" FOR INPUT AS #2
INPUT LINE #2,a$
CLOSE #2
PRINT "Data is ";a$: STOP
handler:
IF ERR=53 THEN
PRINT "Error - File DATA.INF not found" : STOP
ELSE
ON ERROR GOTO 0 'another error so report
END IF

Command Reference Page 201

ON...GOSUB statement

e Syntax
ON n GOSUB ({linenumber|linelabel} [,{linenumber|linelabel..}]..
e Effect

This statement calls one of a list of subroutines depending on the
value of a parameter.

¢ Comments
If n has a fractional part it will be rounded to an integer.
n determines which label is jumped to. If n is 1 then the first

subroutine is GOSUBed, else if n is 2 then the second label is the the
subroutine that is executed, and so on for all the given subroutines.

If n is less than 1 or greater than the number of subroutines
available, program execution continues after the ON...GOSUB
statement.

e Example

ON Number% GOSUB One-routine, Two_routine, Three_routine
'If Number% = 3 then Three-routine will be executed.

Page 202 Command Reference

ON...GOTO statement

e Syntax
ON n GOTO {linenumber|label} [,{linenumber|label}]..
e Effect

This statement causes program execution to branch to one of a list of
program lines depending on the value of a parameter.

¢ Comments

This statement differs from ON...GOSUB in that program execution
does not return to the line after this statement.

If n has a fractional part then it will be rounded to an integer.

n determines which label is jumped to. If n is greater than the number
of labels specified, or if n is less than 1, program execution continues
after the ON...GOTO statement.

e Example

ON Number% GOTO One branch, Two_branch, Three branch
'If Number% = 1 then program execution will continue at
'One_branch.

Command Reference Page 203

ON...MENU statement

e Syntax
ON MENU GOSUB {linenumber|linelabel] 0}

e Effect

Determines the subroutine that is called when the user clicks on a

menu item.

e Comments
ON MENU GOTO 0 disables the menu event.

MENU ON should be used to enable menu checks. Use the MENU
function to find which Menu item has been selected.

e Example

MENU 1,0,1,"Project"
MENU 1,1,1,"Load"
MENU 1,2,1,"Save"
MENU 1,3,1,"Quit"

MENU 2,0,1,"Search"
MENU 2,1,1, " Find"

ON MENU GOSUB MenuHandler

MENU ON 'enable MENU events

'The main program would go here
SLEEP 'Wait for an event to happen

MenuHandler:
title%=menu(0)

PRINT "Title ";title%;"™ item:;MENU(1)
IF title%=1 AND MENU(1)=3 THEN STOP 'Quit

RETURN 'Quit

Page 204

Command Reference

ON...MOUSE statement

¢ Syntax

ON MOUSE GOSUB {linenumber|linelabell| 0}

e Effect

Determines the subroutine that is called when the user clicks on the
left mouse button.

e Comments
ON MOUSE GOTO 0 disables the mouse event.

MOUSE ON should be used to enable mouse checks. The MOUSE
function should be used determine the mouse position.

e Example

ON MOUSE GOSUB MouseHandler
'The main program would go here

DO
SLEEP 'Walt for events to happen
LOOP
MouseHandler:
junk%=MOUSE (0) 'get next mouse event
PSET (MOUSE(1),MOUSE(1)
RETURN
Command Reference Page 205

ON...TIMER statement

e Syntax
ON TIMER(n) GOSUB {linenumber|linelabel}

ON TIMER GOSUB 0

e Effect

Sets up or disables a timer event.

e Comments

n gives the frequency of timer events in seconds. This is expressed as
a single precision floating point number and should be between (0
and 86400).

ON TIMER GOTO 0 disables the timer event.

TIMER ON should be used to enable timer event processing.

e Example

ON TIMER(5) GOSUB TimerHandler
'The maln program would go here

DO
SLEEP
LOOP
'Wait for events to happen
TimerHandler:
PRINT "Timer events occur every 5 seconds"
RETURN 'Quit
Page 206 Command Reference

OPEN statement

e Syntax

OPEN file spec [FOR mode] AS [#]channel num [LEN=record size]
OR

OPEN mode string, [#]channel num, file spec [, record size)

¢ Effect

This statement prepares a file for reading or writing.

¢ Comments
file spec must conform to AmigaDOS specifications.

mode may be one of the following:
APPEND Specifies a sequential file which is to be appended
INPUT Specifies a sequential file which is to be read from
OUTPUT Specifies a sequential file which is to be written to

RANDOM Specifies a random-access file to be read from or
written to

mode_string is a string expression of one character which is the
first letter of the mode of the file (a, I, 0 or R), in upper- or lower-case.

channel num may be any integer value from 1 to 255 inclusive.

record_size specifies the length of each record in bytes in a
random-access file, or the internal buffer size for other types of file.
The default value for record sizeis 128 bytes.

OPEN associates a file or device with channel num. This number is
used in all read or write operations to access the file or device.

The counterpart to OPEN is CLOSE. It is a good idea to CLOSE a file
whenever possible and reOPEN it later if necessary. This is a safety
measure; if the system should go crazy for some reason, any data
which is still in a buffer will be lost and the file may very well later
contain garbage.

Command Reference Page 207

Normally file_spec refers to a disk file, but there are certain device
names that may also be used. These names are:

PAR: parallel printer port

SER: RS232 port

PRT: current printer port as chosen with Preferences
LPT1: Same as PRT:

Note that channels opened with these names will only respond to
simple input/output, that is PRINT#, WRITE# INPUT# and INPUTS.
Random access operations and other operations (such as LOF) ,that
do not make sense on non-disk devices, will not work.

e Example

OPEN "RECORDS.RAN" FOR RANDOM AS #1 LEN=32

'This line opens the random-access file RECORDS.RAN for
'reading & writing, associates it with #1 and specifies
‘the record length to be 32 bytes.

‘the next line does the same using the alternate syntax
'‘except using #2

OPEN "R", #2, "RECORDS.RAN", 32

Page 208 Command Reference

OPTION BASE statement

e Syntax
OPTION BASE (0|1}

o Effect

This statement defines the lowest subscript value of arrays.

e Comments

OPTION BASE sets the subscript value of the first element in an array.
For instance, an OPTION BASE 1 before DIM Array%(42) causes 42
elements (1-42) to be allocated, not the default 43 (0-42).

m If the Array Checks option is off when a program is
compiled, OPTION BASE statements are ignored and OPTION BASE O
is assumed.

e Example

OPTION BASE 0 'this is default
DIM Another array%(177) '178 elements will be
‘allocated, 0 to 177

Command Reference Page 209

PAINT statement

e Syntax
PAINT [STEP] (x,y) [,paint colour],[,border colour]

e Effect

Fills an enclosed with a given colour.

e Comments

The area that is filled is based on (x,y) and must be enclosed with
pixels of the colour border colour.

The area is filled with the colour paint colour or in the current
foreground colour if this is omitted. The foreground colour may be
changed using the COLOR statement; the hues of the colours can be
changed using the PALETTE statement.

IF border colour is omitted then the paint colour is used.
PAINT will leave the current graphics position at the point specified.

This statement may only be used with windows of types 16 to 31(i.e.
smart or super-bitmap).

e Examples

CIRCLE (100,100),50,3,2
PAINT (100,100),3,2

' draws a filled circle in colour 3 with outside in colour
2.

CIRCLE (100,100),50
PAINT STEP (0,0)

' draws the same circle in the current foreground colour.

Page 210 Command Reference

PALETTE statement

e Syntax

PALETTE colour number, red, green,blue

e Effect

This statement allows you to change the physical appearance of
colours on the screen.

e Comments

Each colour on the Amiga can have its actual appearance changed on
screen by changing the colour palette. The number of possible
colours depends on the number of bit planes that the current screen
has and can range from O up to 31, although by default only colours
0 to 3 are available.

The red, green, and blue parameters give the proportion of the
primary colours for the particular colour number. These
proportions may vary from O to 1. 0 means none of a particular
primary colour, 1 means the maximum amount.

Colour numbers are often known as color-ids.

e Examples

PALETTE 1,0,0,0 'make colour 1 black

PALETTE 0,1,1,1 'make colour 0 white

PALETTE 2,1,0,0 'make colour 2 pure red

Command Reference Page 211

PATTERN statement

e Syntax

PATTERN [line;pattern][,area_array]

e Effect
Sets the line pattern and/or area fill pattern for graphics.

e Comments

line patternis an integer expression which is used as a bit mask
for drawing lines. Normally it is best to express this in hexadecimal
or binary. See the examples below.

area array is an integer array that is in a similar manner to
line pattern when the AREAFILL statement is used. Each item in the
array is treated as a 16 bit horizontal mask. The entire array is
used; the array should be single-dimensional and have a number of
elements that is a power of 2 (e.g. 2, 4, 8, 16 etc). Note that no
parentheses are required after the array name.

e Example
PATTERN &h5555 ' draw finely dotted lines

PATTERN &b0101010101010101 ' the same expressed in
' binary

PATTERN &9999 ' coarser dotted 1lines

DIM PAT% (3)

PAT% (0) =£h8888
PAT% (1) =&h4444
PAT% (2) =&h2222
PAT% (3)=&h1111

PALETTE , PAT%
' a very "thin" grey fill pattern.

Page 212 Command Reference

PCOPY statement

e Syntax
PCOPY
e Effect

Dump the current screen to a printer.

e Comments

This has a similar effect as running the ScreenPrint program from
the Amiga Extras disk. It uses the printer configuration set by the
the Preferences tool.

e Example

IF a$="C" THEN
PCOPY dump screen
END IF

Command Reference Page 213

PEEK, PEEKB, PEEKL, PEEKW
functions

e Syntax
PEEK (address)
PEEKB (address)
PEEKL(even address)

PEEKW (even address)

e Effect

These functions return the contents of the memory specified.

e Comments

PEEK and PEEKB return one byte, PEEKW returns a word (16-bit) and
PEEKL returns a long (32-bit). When using PEEKL or PEEKW, the
address specified must be even, otherwise a Fatal error -
unexpected exception error will occur .

These functions are supplied as fast ways of reading user memory.
For this reason, no checks are made as to the even-ness of the
addresses for PEEKL and PEEKW;.

PEEK, PEEKB and PEEKW return integers; PEEKL returns a long integer.

The PEEK function is exactly the same as PEEKB in HiSoft BASIC
Professional on the Amiga. For compatibility with the AmigaBASIC
interpreter use PEEK; for compatibility with HiSoft BASIC
Professional on the Atari ST use PEEKB.

e Example
Seven%=7
PRINT PEEKW(VARPTR (Seven%))

Result:

9

Page 214 Command Reference

POINT function

e Syntax
POINT (x pixel,y pixel)

e Effect

This function returns the colour of a particular pixel.

e Comments

x_pixel and y pixel specify the coordinates within the current
output window of the pixel to be read. The result corresponds to the
table shown under the description of COLOR.

If the required pixel is not within the window, a result of -1 is
returned.

e Example

PRINT "RB"
FOR x=0 to 8
FOR y=0 to 16

IF POINT(x,y) THEN LINE (10* (x+1),10%(y+2))-(10,10),b
NEXT y, X
Command Reference Page 215

POKE, POKEB, POKEL, POKEW
statements

e Syntax

POKE address, byte value
POKEB address, byte value
POKEL even address, long value

POKEW even address, word value

e Effect
These statements write data directly into memory.

e Comments

These statements write either a byte, word or long word to address.

POKEL or POKEW to an odd address will result in a Fatal Error -

address exception message.

The POKE statement is exactly the same as POKEB in HiSoft BASIC
Professional on the Amiga. For compatibility with the AmigaBASIC
interpreter use POKE; for compatibility with HiSoft BASIC

Professional on the Atari ST use POKEB.

e Example
Ten%=10

POKEW VARPTR (Ten%),7
PRINT Ten%

Result:

7

Page 216 Command Reference

POS function

e Syntax
POS (x)
e Effect

This function returns the column number of the current cursor

position.

e Comments

x is a dummy argument and serves no purpose. The value returned is
the column (horizontal position) of the cursor, the leftmost position

being 1. x should be numeric.

e Example

x%=POS (0)
PRINT "The cursor was in column";x%

Command Reference

Page 217

PRESET statement

e Syntax
PRESET [STEP] (x pos,y pos) [,colour]
o Effect

This statement resets or sets a pixel to a given colour in the current
window.

e Comments

PRESET is similar to PSET, except that if the colour parameter is
omitted the background colour is used. The parameters x pos and
v_pos specify the pixel set, relative to the top left of the current
window. If the optional STEP keyword is specified then the co-
ordinates are taken relative to the current graphics position.

e Example

CONST ypos=70
DEFINT i
FOR 1=10 TO 350
IF 1<300 THEN PSET (i,ypos)
IF 1>50 THEN PRESET (i-50,ypos)
NEXT 1

Page 218 Command Reference

PRINT statement

¢ Syntax
PRINT [expression 1]1[{;| |,}expression 2][;]..
e Effect

This statement prints the data defined in the list of expressions on
the screen.

e Comments

The list of expressions may contain a series of string and/or numeric
expressions. These expressions should be separated with semi-
colons, commas or spaces. If the list of expressions does not end in a
semi-colon or a comma, a CR will be output.

A PRINT by itself will cause a CR.

A semi-colon separating expressions will cause them to be printed
without a space between them. A space between parameters has the
same effect as a semi-colon. We recommend using a semi-colon. A
comma will cause the expression after the comma to be printed at the
next tab stop.

SPC ,TAB and PTAB may be used in PRINT statements, but not
elsewhere.

Numbers are printed with either a leading space (if positive) or minus
sign, and always with a trailing space.

A question-mark may be substituted for PRINT if absolutely
necessary; this is a feature of some older BASIC interpreters. To
enhance compatibility with other BASICs, we have included this
option as well.

Note that, for compatibility with AmigaBASIC, the default window
width is infinite. So don't use

FOR I=1 TO 100
PRINT I,
NEXT I

Without using WIDTH first; otherwise all 100 numbers will appear on
the same line.

Command Reference Page 219

¢ Example

PRINT "The range is";1;"to";100," (inclusive)™"

Result:

The range 1is 1 to 100 (inclusive)

Page 220 Command Reference

PRINT#, PRINT# USING
statements

e Syntax

PRINT #channel_num, [USING format_string] expression list [;]

o Effect

These statements write formatted data to a file or device.

¢ Comments
channel numis the number specified when the file was opened.

format_string is an optional string of formatting characters. For
an explanation of these, please refer to the PRINT USING entry.

expression list is the list of string and/or numeric expressions to

be written.

PRINT# writes the data exactly the way PRINT would to the screen. For
this reason, great care should be taken to format the data written so
that it is recognisable for a later INPUT#.

e Example

FOR I%=1 TO S
PRINT #1,I%;",";
NEXT I%

Result: (in the target file)

1,2,3, 4,5,

Command Reference Page 221

PRINT USING statement

¢ Syntax

PRINT USING format string; expression list [{,[;}]

e Effect

This statement prints expression list according to the format
specified by format string.

e Comments

expression_list contains the expressions (numeric or string) that
are to be printed; they must be separated by semi-colons.

format_string is a string of formatting characters which determine
the field and format of the expressions to be printed.

There are three format characters available for formatting strings:

! This specifies that only the first character of the string is
to be printed.

\ \ These specify that 2 + n characters of the string are to be
printed. n is the number of spaces between the
backslashes. If the string is longer than 2 + n, the extra
characters are not printed. If 2 + n is larger than the
number of characters in the string, the string will be
printed left-justified with spaces padding the right.

& This specifies a variable length field; if the ampersand (&)
is the format string, the string is printed without
modification.

There are several format characters available for formatting numeric
output:

The hash represents each digit to be printed. These
positions are always filled; if a number has less digits than
have been specified, the number will be printed right
justified with spaces padding the left.

A decimal point is printed. If rormat_string specifies that
a digit precedes the decimal, a digit will always be printed,
even if is zero.

+ This causes the sign of the number (+/-) to be printed at
the beginning or end of the string, depending on whether
the + is at the beginning or end of format_string.

- When placed at the end of format string, this causes a
minus sign to be printed if the number is negative. If the
number is positive, this has no effect.

Page 222 Command Reference

* k

$$

xis

AAAA

This causes leading spaces of a number to be filled with
asterisks. A double asterisk also represents two more digit
positions.

The double dollar-sign causes a dollar-sign to be printed to
the immediate left of the number; two more digit positions,
one of which is for the $, are specified.

This results in a combination of ** and $5%; leading spaces
are asterisks and a $ is printed before the number. Three
more digit positions are specified, one of which is taken up
by the dollar-sign. If a number is negative, a minus sign
immediately precedes the $.

If specified before a decimal point, a comma is printed
every three digits to the left of the decimal. If , is specified at
the end of format_string, it is printed as part of the
number. The comma specifies one additional digit position
and has no effect when used together with ~~~~.

The four carets specify exponential format. Space is
reserved for E+xx to be printed. the decimal point may be
specified to be anywhere in the number. The significant
digits of the number are left justified. Unless a
leading/trailing + or a trailing - are specified, one digit
position to the left of the decimal point will be used to print
the number's sign. Note that double-precision numbers
can have five digit exponents, so five carets should be used.
An underscore before a character in the format string
causes the character to be printed as a literal; an
underscore will be printed by specifying two consecutive
underscores in the format string.

A percent sign is printed, if the number to be printed exceeds the field
in the format_string. If a rounded number is larger than the field, a
percent sign will be printed in front of the number.

e Example

PRINT USING "!";"FRED"
PRINT USING "\ \";"JOHN"
PRINT USING "&";"Today is"
PRINT USING "###.#";25.4
PRINT USING "#.#";2.54

PRINT USING "##.## ",;12.34,5.678,1.2
PRINT USING "+#.# ";-1.1,2.2
PRINT USING "#.#- ";-3.3,4.4

PRINT USING "**# .4 ";56.78,-91.2,-3
PRINT USING "SS##.4#";123.45

PRINT USING "**S##.##";2.54

PRINT USING "####, .##";4567.89

Command Reference Page 223

PRINT USING "+####""""";-0.4444
PRINT USING " £##.##";4.99
PRINT USING "#.#";33.25

PRINT USING ".##";.999

Results:

F
JOH
Today is
25.4
2.5
12.34 5.68 1.20
-1.1 +2.2
3.3- 4.4
*56.8 -91.2 *-3.0
$123.5
**x52.54
4,567.89
~4444E-04
£ 4.99
%33.3
.99

Page 224

Command Reference

PSET statement

e Syntax
PSET [STEP] (x pos,y pos) [,colour]
e Effect

This statement plots a pixel of a given colour in the current window.

e Comments

The colour parameter specifies the colour of the pixel to be plotted,
and if omitted defaults to the current line colour. The parameters
x _posand y pos specify the pixel to be plotted, relative to the top left
of the current window. If the optional STEP keyword is specified then
the co-ordinates are taken relative to the current graphics position.

e Example

pi=3.1415926
FOR 1=0 to 4*pi STEP 0.05

PSET (1*50,100+100*SIN(1))
NEXT i

Command Reference Page 225

[PTAB function

e Syntax
PTAB (n)
o Effect

Moves to a given pixel position whilst printing

e Comments

PTAB is similar to TAB except that the position is expressed in pixels
rather than characters.

If the current print position is already beyond n, then the print
position will move to the nth column on the next line. If n is greater
than the output width, the print position is moved to n MoOD
pixel width. If n is less than one, the print position will become 1.
PTAB may only be used in PRINT and LPRINT statements.

e Example

FOR i%=2 TO 200
PRINT PTAB(i%);1i%;
NEXT i%

Page 226 Command Reference

PUT file 1/O statement

e Syntax

PUT [#]channel number(, record number]

e Effect

This statement writes a record from the random-access buffer to the
designated random-access file.

¢ Comments
channel number is the number specified when the file was opened.

If record number is not specified, the record written will be the next
record.

e Example
LSET a$=FNaddress$ (10)

PUT #1,10

LSET a$=FNaddress$(11)

PUT #1 'will be record 11 by default
Command Reference Page 227

PUT graphics statement

e Syntax

PUT (x,y),array_name[,verb]

o Effect

This statement copies (or blits} onto the screen a rectangular image
saved with GET.

e Comments

The top left of the rectangle relative to the screen is defined by x and
y. If the array was not filled by a GET then unpredictable and
potentially disastrous events may occur.

The optional verb parameter allows the mode of the copy to be
specified. This can be in the form of various reserved words, or an
integer. Allowed verbs are:

PSET Copies the image directly onto the screen,
obliterating any previous contents.
PRESET Similar to PSET but a negative image results.

AND, OR, XOR Resulting pixels are a result of the given operation
performed on source and destination pixels.

The default verb is XOR. The verb may also be described in terms of an
integer expression, the effect of which is described in the graphics
library of the ROM Kernal Manual, corresponding to the minterm.

The height and width that are used are stored when the image is
saved with GET.

e Example

DIM scr%(4347-1) ' -1 as array starts at O
GET (10,20)-(100,200),scr%
FOR 1%=0 to 200 STEP 20
PUT (i%,1%),scr%,PSET
NEXT 1%

Page 228 Command Reference

RANDOMIZE statement

e Syntax
RANDOMIZE [expression]

e Effect

This statement provides the random number generator with a new
seed.

e Comments

If no expression is supplied, RANDOMIZE will prompt the user for a
seed. expression may be any integer expression. If TIMER is given as
expression, the TIMER function will provide the seed.

The RND function will produce the same sequence of random
numbers unless re-seeded.

e Example

Seed%=42
RANDOMIZE Seed$
Rand!=RND

Command Reference Page 229

READ statement

e Syntax
READ variable list

e Effect

This statement assigns values from DATA statements to variables.

e Comments

READ cannot be used without a DATA statement. The variable type in
a READ statement will be converted to the variable type in the DATA
statement from which the value is read.

The number of elements in a DATA statement should not exceed the
number of variables in the READ statement. If there are more
elements in a DATA statement then are READ, the extra elements are
ignored.

To re-READ the elements of DATA statements, the RESTORE
statement is used.

e Example

DIM Arré&(5S)
FOR I%=1 TO 5
READ Arr& (I%)
NEXT I%
DATA &H42424242,&HFC0000,1200,-45002

Page 230 Command Reference

REDIM statement

¢ Syntax

REDIM [APPEND] array(subscripts)|[,array(subscripts)]..

s Effect

This statement changes the size of an array.

e Comments

subscripts may be integer or long integer expressions. REDIM can
even used to change the number of dimensions in an array. Any data
that is in an array when it is REDIMmed is lost.

REDIM APPEND is used to add space to a one-dimensional array
without destroying the information contained in the array. If the
subscript of a REDIM APPEND is smaller than the original array, the
array will be truncated; this also happens without loss of data in the
remaining elements.

e Example
DIM Fred% (256)
FOR I%=1 TO 256

Fred% (I%)=1%
NEXT I%
REDIM APPEND Fred% (260)
PRINT Fred%(42)

Result:

42

Command Reference Page 231

REM statement

e Syntax

REM remarks..

o Effect

This statements allows remarks to be added within the source, and
also to specify metacommands.

e Comments

Comments can also begin with ' (i.e. apostrophe). See Chapter 4 for
details.

If a dollar sign ($) follows the REM it is assumed to be a meta-
command (see Appendix A for further details), else the rest of the
line is ignored.

e Example

' SOPTION A+
REM The preceding line forces array checks on

Page 232 Command Reference

REPEAT...END REPEAT
statement

¢ Syntax

REPEAT name

[EXIT name]

END REPEAT name

o Effect

The statements within the REPEAT loop are executed until an EXIT
statement for the loop is executed.

e Comments

The name is a valid variable name that is not currently being used in
the program. You can re-use the same name for a number of different
REPEAT loops but do not use the name of a sub-program, variable or
function.

This loop is the most general looping construct in HiSoft BASIC
Professional because each loop is named and you can exit out of an
outer loop from within an inner one (see the example below). However
when this facility is not required DO...LOOPs are normally clearer
and require less typing.

Note that REPEAT is not specified in the EXIT statement.

Command Reference Page 233

e Example

i=0: sum=0
REPEAT one
i=i+1: j=0
REPEAT two
j=3+1
sum=sum+a (i, j)
IF sum>1000C THEN
PRINT "Total too big": EXIT one
END IF
IF j=n THEN EXIT two
END REPEAT two
IF i=n THEN EXIT one
END REPEAT one
'This example totals the elements in the two-dimensional
'array a() stopping immediately when the sum becomes
'greater than 10000.

Page 234 Command Reference

[RESET statement

e Syntax
RESET
e Effect

This statement closes all open disk files.

e Comments
All disk write buffers are written to disk and the files are then closed.

¢ Example
IF a$="QUIT" THEN RESET : STOP -1

Command Reference : Page 235

RESTORE statement

e Syntax
RESTORE [{line number|label}]

e Effect

This statements enables a READ statement to access a DATA
statement that has been read previously.

e Comments

line number or label specify the DATA statement that is to be READ
again. If no 1ine number or label is specified, the next READ
statement will read the first DATA statement to appear in the
program.

e Example

READ Johné&
PRINT Johné&
John&=0

PRINT Johné&
RESTCRE J data
READ Johné&
PRINT Johné&

J data:
DATA 3448325377,4020987683

Result:

3448325377
0
3448325377

Page 236 Command Reference

RESUME statement

¢ Syntax

RESUME ({line number|line label}

e Effect

This statement resumes program execution from within an error
handling routine at the specified program line.

e Comments

This command is for use from error handling routines set up with
ON ERROR GOTO to resume execution of the program at the given
position. If the statement is used when not in an error-handler a
fatal error will occur.

It is the programmers responsibility that the RESUME is to the same
program level as when the error occurred - that is if it was in a sub-
program, function or subroutine the RESUME must go there for
correct program execution. Failure to adhere to this will result in
random forms of program crashes.

e Example

a$="TEST.DAT"
open_retry:
ON ERROR GOTO no_open
OPEN a$ FOR INPUT AS #1
ON ERROR GOTO 0 'so that errors are reported
read data 1
no _open:
PRINT "Cannot find file ";a$
INPUT "Filename:";a$
RESUME open_retry

Command Reference Page 237

RETURN statement

* Syntax
RETURN [{line number|label}]

o Effect

This statement returns program execution from a subroutine.

e Comments

Program execution is returned to the line after the GOSUB statement
that called the subroutine. If 1ine number or label are specified,
execution continues on the specified line.

e Example

GOSUB Routine 'Branch to subroutine
'execution continues here
'after the RETURN

Routine:
RETURN 'return from subroutine
Page 238 Command Reference

RIGHTS function

e Syntax

RIGHTS (string_expressi on, n)

e Effect

This function returns a string starting at the nth character from the
right.

e Comments

If n is 0, a null string is returned. If n is larger than
string expression, string expression is returned entirely.

e Example

d$=DATES
PRINT "Year:";RIGHTS (dS$,4)

Command Reference Page 239

RMDIR statement

¢ Syntax
RMDIR pathname

e Effect

This statement removes an empty subdirectory.

e Comments

The subdirectory which is to be deleted must not contain any files.
pathname must conform to the AmigaDOS conventions.

¢ Example
RMDIR ":fonts"

Page 240

Command Reference

00

RND function

e Syntax
RND [(n)]
e Effect

This function returns a pseudo-random single-precision number
between O and 1.

e Comments

If n = 0, the last number generated is returned. If n < 0, n is used to re-
seed the sequence of numbers. If n > O or is omitted, the next number
in the sequence is generated.

The algorithm used is based on that of B.A. Wichman and I.D. Hill
(NPL Report DITC 6/82). See also the RANDOMIZE statement.

e Example

Number!=RND (-1) 'the number returned will have
'used -1 as the seed

Command Reference Page 241

RSET statement

e Syntax

RSET string variable = string expression

o Effect

This statement moves data into a random-access file buffer. It can
also be used to right-justify the value of the string in
string variable

¢ Comments

RSET is the counterpart of LSET. If string expression uses less bytes
than string variable, the string is right-justified with spaces used
as padding.

¢ Example

z$=SPACES$ (80)
RSET z$="On the Right of the Screen®
PRINT z$

Page 242 Command Reference

RUN statement

e Syntax

RUN [{line number|file spec}]

o Effect

This statement restarts the current program or the program
specified by file spec.

¢ Comments
If 1ine _number is specified, the program is restarted on the line
specified. Alphanumeric labels are not allowed.

file spec can be any valid string expression, and can be any type of
executable program. In some BASICs filenames do not need to be in
quotes, but they are needed in HiSoft BASIC Professional. This
facility should not be used when compiling to memory.

RUN will close all open files, windows and screens before executing.

e Example

RUN "GENAM2" 'this will start GenAM2 in the
'current directory

Command Reference Page 243

SADD function

e Syntax

SADD (string expression)

o Effect

This function returns the address of string expression.

e Comments

Be very careful when using this function as strings can move about
in memory without prior warning if a garbage collect should occur.

e Example

Astr$=" BASIC"

PRINT Astr$

POKEB SADD (Astr$),ASC("H")
PRINT Astr$

Result:

BASIC
HBASIC

Page 244 Command Reference

-

SAY statement

e Syntax

SAY string expression[,mode array]

e Effect
Makes the Amiga "speak” given a string of phonemes.

¢ Comments

mode _array is optional . This array and suitable phonomes are
described in detail in the AmigaBASIC manual, so we shall not
describe it further here.

The TRANSLATES function is often used in conjunction with the SAY
statement to avoid the need to construct phonomes directly.

e Example
SAY TRANSLATES ("Hello There");

Command Reference Page 245

SCREEN statement

e Syntax
SCREEN screen-id,width, height, planes, mode[, type]
OR

SCREEN CLOSE screen-id

e Effect

This statement creates or closes an Amiga screen.

e Comments

screen-id should be between 1 and 4 which specifies the screen. This
screen-id can be used in subsequent WINDOW statements.

SCREEN CLOSE closes the specified screen and any windows that
were still open in that screen.

The width and height parameters give the screen's size in pixels.
planes gives the number of bit planes associated with the screen so
that 1 gives 2 colours, 2 gives 4 colours,3 gives 8 colours, 4 gives 16
colours, 5 gives 32 colours.
If the type parameter is omitted then, the mode parameter is one of
1 low resolution, non-interlaced

high resolution,non-interlaced

2
3 low-resolution, interlaced
4

high-resolution, interlaced

If the type parameter is specified the mode parameter is ignored and
the type parameter gives the ViewMode for the screen. These are
somewhat complex and are described in detail in the ROM Kernel
Volume 1 manual. For example a low resolution HAM (Hold and
Modify) screen can be specified with a type of «h800.

Page 246 Command Reference

m No checks are made on the parameters to the SCREEN
statement; this has the advantage that you can use add-on screen
hardware but the disadvantage that using the wrong numbers can
cause very unpredictable effects to occur.

It is very easy to use large amounts of memory when using this
statement.

e Example

SCREEN 1, 640,200,3,2 ' 8 colour high resolution screen.

Command Reference Page 247

SCROLL statement

e Syntax
SCROLL (x1,yl)-(x2-y2),delta x,delta y

e Effect

Scrolls a region of the current output window

e Comments
(x1,y1)-(x2-y2) specifies the rectangle to be scrolled.

delta _x and delta y give the number of pixels to scroll right and
down respectively. Negative values will scroll left and up respectively.

e Example
SCROLL (100,100)-(150,150),8,0

' scrolls a 50 by 50 pixel area right up 8 pixels.

Page 248 Command Reference

SELECT...END SELECT
statement

¢ Syntax

SELECT [CASE|ON] variable

[CASE|=] case list
[EXIT SELECT]

[CASE|=] case list
[CASE|=] [ELSE|REMAINDER]
l::ND SELECT
e Effect

One series of statements is executed depending on the value of
variable.

e Comments

variable can be any non-subscfipted variable, numeric or string. If
you wish to select on a more complicated expression then this
should be assigned to a temporary variable first.

The case_1ists consist of the following items separated by commas:
expression

or
first expression TO second expression

or
relop expression

If the first form is used then if the variable is equal to the
expression then the following statements are executed until the
next CASE or = statement.

Command Reference Page 249

If the second form is used, then if the variable is greater or equal to
the first expression and less than or equal to the
second_expression then the following statements are executed.

In the third form relop may be one of =,<>,>,>=,<=,< or == and the
following statements are executed if the variable satisfies the
condition.

If there is a CASE ELSE, CASE REMAINDER, =REMAINDER or =ELSE
clause then if none of the CASEs match then the following
statements will be executed. The CASE ELSE clause must be the last
before the END SELECT.

The different alternatives are available for ease of converting
programs written in other BASICs. The most common form is
SELECT CASE...CASE...CASE ELSE... END SELECT.

e Examples

INPUT A,B
SELECT CASE A
CASE 1,<0
PRINT "negative or 1"
CASE >B
PRINT "greater than B"
CASE 13 TO 19
PRINT "in the teens"
CASE ELSE
PRINT "different"
END SELECT
INPUT a$
SELECT a$
="JOHN", "FRED": PRINT "John or Fred"
= <"A", >"Z": PRINT "Names must start with a capital letter"
= "MARY": PRINT "Mary"
= REMAINDER
PRINT "unknown name"
END SELECT

Page 250 Command Reference

SGN function

e Syntax

SGN (numeric expression)

e Effect

This statement returns the sign of numeric expression.

e Comments

If numeric expression <0, -1 is returned.
If numeric_expression =0, 0 is returned.
If numeric expression >0, 1 is returned.

numeric_expression may be of any numeric type.

e Example

Var one% = -42
Var two% = 0
Var thr% = 42

PRINT SGN (Var one%)
PRINT SGN(Var two%)
PRINT SGN(Var thr%)

Result:

-1
0
1

Command Reference

Page 251

SHARED statement

e Syntax

SHARED variable list

e Effect

This statement enables a subprogram to access variables from the
main program without them having been passed as parameters.

e Comments

The variable list may contain variable names and array names,
which should be terminated with ().

e Example

MAIN:

Freds=127

John%=76

CALL Routine (John%,10)

SUB Routine (A%, B%)
SHARED Fred%

Print Fred%, A%, B%
END SUB

Result:

127 76 10

Page 252 Command Reference

SIN function

¢ Syntax

SIN (numeric expression)

e Effect

This function returns the sine of the numeric _expression which
must be in radians.

e Comments

This function is calculated with single-precision unless the
numeric_expression is in double precision, thus forcing a double-
precision calculation.

e Example
DEF FNcosecant (a)=1/SIN(a)

Command Reference Page 253

SLEEP statement

e Syntax
SLEEP
e Effect

Causes the program to wait until an event occurs in a "multi-taking
friendly” way.

e Comments

The statement will finish if any event that occurs including key-
presses, events that have been disabled or suspended using; e.g.
MENU STOP. For this reason SLEEP is often used in a loop.

SLEEP should be used in preference to tight GOTOs or LOOPs so that
other tasks in the system may run.

e Example

DO
IF MOUSE(0)<>0 THEN EXIT LOOP
SLEEP

LOOP

" loops until the left mouse key is clicked.

Page 254 Command Reference

SOUND statement

¢ Syntax

SOUND frequency,duration, [, [volume] [,voicel]
SOUND WAIT

SOUND RESUME

¢ Effect

Produces a sound from the speaker.

¢ Comments

SOUND WAIT causes subsequent SOUND statements to be queued
until a SOUND RESUME statement is executed; this enables you to
synchronise two or more sounds for different voices.

frequency gives the frequency of the sound in Hertz between 20 and
15000. This is a single precision number.

C 130.81 Middle C 523.25
D 146.83 D 587.23
E 164.81 E 659.26
F 174.61 F 701.00
G 196.00 G 738.99
A 220.00 A 880.00
B 246.94 B 993.00
C 261.63 C 1046.50
D 293.66 D 1174.70
E 329.23 E 1318.50
F 349.23 F 1396.90
G 392.00 G 1568.00
A 440.00 A 1760.00
B 493.88 B 1975.50

durationis a single-precision numeric expression between 0 and 77.
The time in seconds is duration/18.2.

volume is an optional integer parameter from O (lowest volume) to
255 (highest volume). If omitted a volume of 127 is used.

Command Reference Page 255

voice is an optional parameter giving which Amiga audio channel is
being used. The default is 0. Voices 0 and 3 go to the left channel and
1 and 2 to the right.

e Example

SOUND 523.25,9.1,255,2 ' loud Middle C for half a second
' on the right channel.

Page 256 Command Reference

SPACES function

e Syntax
SPACES (n)
e Effect

This function returns a string of spaces (ASCII 32), the length of
which is specified by n.

e Comments

n must be positive, and within the range of long integers. If merely
want to print some spaces it is more efficient to use the SPC function.

¢ Example

DIM names$ (100)
FOR 1=0 TO 100

name$ (1)=SPACES (30)
NEXT 1

Command Reference Page 257

SPC function

¢ Syntax
SPC (n)
o Effect

This function causes n spaces to be skipped in a PRINT statement.

e Comments

In contrast to SPACE$, SPC may only be used with PRINT and LPRINT.
n must be positive and within the long integer range. It is not
necessary to specify a semi-colon after a SPC, the function will not
produce any other characters except the n spaces.

¢ Example

LOCATE 10,1
INPUT "“Name:",a$
LOCATE 10,1

PRINT SPC(5+LEN(a$))
LOCATE 10,1

INPUT "Address:",b$

Page 258 Command Reference

SQR function

e Syntax

SOR (numeric expression)

e Effect

this function returns the square root of the numeric expression.

e Comments

The numeric_expression must be greater than or equal to 0. SQR is
normally calculated using single precision maths; if the
numeric_expression is double-precision, the value returned will be
calculated with double-precision.

e Example

PRINT SOQR (42)
PRINT SQR(42#%)

Result:

6.480741
6.48074069840786

Command Reference Page 259

STATIC statement

e Syntax

STATIC variable list

e Effect

This statement declares variables as local to function definitions and
sub-programs and preserves their values when the function or sub-
program is left and re-entered.

e Comments

This statement can be used only within function definitions and
sub-programs.

Variables in function definitions usually are global. STATIC makes
these variables local to the specific function.

¢ Example

test=10

PRINT FNeasy, test

DEF FNeasy

STATIC test 'without this the global
test=5 'test would be changed here
FNeasy=1/test

END SUB

Page 260 Command Reference

STICK function

¢ Syntax
STICK(n)
e Effect

This function returns the x and y positions of the two joysticks.

e Comments

n can be:
0 This returns the x position of joystick 1.
1 This returns the y position of joystick 1.
2 This returns the x position of joystick 2.
3 This returns the y position of joystick 2.

Note: reading joystick 1 will disable subsequent use of the mouse so
you have been warned!

For the x positions the function returns:
-1: Left 0: Centre 1: Right
For the y positions the function returns:
-1: Up 0: Centre 1: Down

e Example
PSET (200,100)

DO

XA% = STICK(2)

YA% = STICK(3)

PSET STEP (XA%,-YA%) 'plot relatively
LOOP UNTIL STRIG(3) 'until Fire button pressed
Command Reference Page 261

STOP statement

e Syntax

STOP [process returncode]

o Effect

This statement causes the program to end; all files are closed and
control is returned to the operating system.

e Comments

If no parameter is specified then the message Press any key will
appear at the bottom of the screen and it will pause until a key is
pressed. To disable this specify a parameter of -1.

If a parameter other than -1 is specified this is used as a AmigaDOS
process return code, useful for programs that are to be run from
CLIs, for example. By default the return code is O (no error), or the
error code+300 if a run-time error occurs.

e Example

IF FEXISTS (COMMANDS) THEN
process COMMANDS

STOP -1 'will return immediately
ELSE
PRINT "Cannot find ";COMMANDS
STOP 'will wait for key
END IF
Page 262 Command Reference

STRS function

¢ Syntax

STRS (numeric_expression)

o Effect

This function returns the string representation of the value of
numeric_expression.

¢ Comments
STRS is the counterpart to VAL.

If numeric_expression 2 0, the string returned contains a leading
space, else it will start with a minus sign. numeric_expression may
be of any numeric type.

e Example
A%=4

B%=6

WRITE STRS (A%*B%)
Result:

wooqn

Command Reference Page 263

STRIG function

e Syntax
STRIG(n)
e Effect

This function returns the status of the specified joystick fire button.

e Comments
nmay be:

0 This returns -1 if the button of joystick 1 was pressed since
the last STRIG(0); O is returned if this is not the case.

1 -1 is returned if the button of joystick 1 is currently pressed,
0 if not.

2 This returns -1 if the button of joystick 2 was pressed since
the last STRIG(2); O is returned if this is not the case.

3 -lisreturned if the button of joystick 2 is currently pressed,
0 if not.

Note: reading joystick 1 will disable subsequent use of the mouse so
you have been warned!

e Example
IF STRIG(3) = -1 THEN

PRINT "Button on joystick 2 1s being pressed"
END IF

Page 264 Command Reference

STRINGS function

¢ Syntax
STRINGS (m, n)

STRINGS (m, string expression)

o Effect

This function returns a string composed of ASCII n, which is of m
length.

e Comments

If string expression is specified instead of n, the first character of
string expression is used.

¢ Example
PRINT STRINGS (40,127)

Result:

AA

Command Reference Page 265

SUB...END SUB
statement

e Syntax
SUB global name((parameter list)][STATIC]

[EXIT SUBI]

END SUB

e Effect

This statement is used to define a sub-program.

¢ Comments

global name must be a name which is unique throughout the
entire program. It is the name which refers to the
sub-program.

parameter list is the list of parameters that are passed to a sub-
program. These may be variable names, array
names terminated with (), or literal values. If
preceded by the keyword VAL then the parameter
is always passed by value; this makes execution of
the sub-program quicker.

STATIC is the optional attribute which signifies that the
sub-program is not recursive, i.e. it does not call
itself. By default, sub-programs have the capability
to be recursive. At the time of writing, the compiler
ignores this if present.

EXIT SUB causes program execution to return to the part of the
program which called the sub-program. It is used to exit the sub-
program before the END SUB.

Variables within a sub-program may be declared LOCAL, SHARED or
STATIC. Please refer to these statements for detailed explanations
and also Chapter 4 for more details of sub-programs.

User defined functions may not be a part of a sub-program
definition.

Page 266 Command Reference

¢ Example
CALL Fred({(1,2)

SUB Fred(One%, Two%)
STATIC RecurDepth
INCR RecurDepth
IF RecurDepth > 4 THEN EXIT SUB
PRINT One% Two%
CALL Fred(One%*2,Two%*2)
END SUB

Result:

2

8

1
2
4
8 16

Command Reference

Page 267

SWAP statement

e Syntax
SWAP 1st variable, 2nd variable

e Effect

This statement causes the values of the two variables to be

exchanged.

e Comments

The two variables must be of exactly the same type, and can be

numeric or string.

e Example

A% =1
B% = 2
SWAP A%,B%

PRINT A%;B%

Result:

2 1

Page 268

Command Reference

SYSTAB function

e Syntax
SYSTAB
e Effect

Returns the address of an internal system table.

e Comments

This is included for more advanced programmers who may wish to
access variables used by the run-time system. The table should be
accessed using suitable flavours of the PEEK and POKE statements.

The table contents are as follows:

Offset Size Description

0] word Workbench screen pixel width

2 word Workbench screen pixel height

4 long pointer to Intuition message port

8 long pointer to Workbench startup message (0 if CLI)
12 long pointer to screen 1 (O if closed)

16 long pointer to screen 2 (0 if closed)

20 long pointer to screen 3 (0 if closed)

24 long pointer to screen 4 (O if closed)

28 long font pointer to topaz.80

32 byte number of planes in Workbench screen

33 byte icon type, used when creating icons for data files,

defaults to 2=Project. Changing to O disables icon
files and stops file operations (e.g. KILL) acting on
.info files

34 long pointer to be used when creating icon files, normally
O (for the default icon) but if changed then it is used
as a pointer to a suitable image structure

With the exception of the icon entries, these entries are read-only
and should not be POKEd. Undocumented offsets from SYSTAB are
not guaranteed to remain the same from one revision of the compiler
to another but those described above are guaranteed.

Command Reference Page 269

e Example
w%=PEEKW (SYSTAB) : h%=PEEKW(SYSTAB+2)
SCREEN 1,w%, h%, PEEKB(SYSTAB+32),2
IF PEEKL(SYSTAB+8) THEN
a$="From Workbench"
ELSE
a$="From CLI"
END IF
WINDOW 1,a$, (20,20)-(300,100),,1

Page 270

Command Reference

SYSTEM statement

¢ Syntax
SYSTEM
e Effect

This statement causes program execution to end, closes all files, and
returns to the operating system.

¢ Comments
This statement is equivalent to sSTOP -1.

e Example
IF UCASES (a$)="QUIT" THEN SYSTEM

Command Reference Page 271

TAB function

e Syntax
TAB (n)
e Effect

This function causes the print position to move to the nth column.

e Comments

If the current print position is already beyond n, then the print
position will move to the nth column on the next line. If n is greater
than the output width, the print position is moved to n MOD WIDTH. If
n is less than one, the print position will become 1. TAB may only be
used in PRINT and LPRINT statements.

e Example

'80 column screen

PRINT TAB(-10) "minus ten"

PRINT TAB(175) "one-hundred-and-seventy-five"
PRINT TAB(10) "ten"

Result:

minus ten
one-hundred-and-seventy-five
ten

Page 272 Command Reference

TAN function

e Syntax

TAN (numeric expression)

o Effect

This function returns the tangent of numeric expression which
must be in radians.

e Comments

The tangent is normally calculated with single-precision. If
numeric_expression is double-precision, the value returned will be
calculated with double-precision.

¢ Example
PRINT TAN(0.5)

Command Reference Page 273

TIMES function

e Syntax
TIMES
 Effect

This function returns the current s&stem time.

e Comments
A string of the following format is returned:

hh:mm:ss hh is the hours in 24hr format (00-23)
mm is the minutes (00-59)
ss is the seconds (00-59)

e Example
PRINT TIMES

Result:
20:43:56 ‘it's 8:43 pm
Page 274 Command Reference

TIMER statement

e Syntax
TIMER {ON|OFF|STOP}

o Effect

Modifies the timer event trapping to change the effect of ON...TIMER
statements.

e Comments
TIMER ON should be used to enable timer checking. This will cause ON
TIMER statements to be acted on whenever a timer event occurs.

After a TIMER OFF statement is executed timer events will be disabled
until another TIMER ON statement is executed.

TIMER STOP causes timer events to be stored until a TIMER ON
statement occurs. This can be useful to suspend menu processing
whilst some essential code is executing.

e Example

ON TIMER(60) GOSUB OnceAMinute
TIMER ON

Command Reference Page 275

TIMER function

e Syntax
TIMER
e Effect

This function returns the number of seconds since midnight as a
single-precision number.

e Comments

This function can be used to provide a seed for RANDOMIZE. It
returns using 50ths of a second precision. It can be used for timing
programs, for example.

Late night programmers beware, examples like the one below will not
work if the time between to calls to this function span midnight!

e Example

t I=TIMER

call Main

t!=TIMER-t!

PRINT "It took";t!;"seconds"

Page 276 Command Reference

TRANSLATES function

e Syntax

TRANSLATES (string expression)

o Effect

converts a string from English into phonemes suitable for the SAY
statement.

e Example
SAY TRANSLATES ("Hello John")

Command Reference Page 277

TRON,TROFF statements

e Syntax

TRON

TROFF

o Effect

These statements allow tracing of a program by line number as it
runs.

e Comments

After a TRON statement has been executed all program line numbers
are printed on the screen as execution occurs. It can be switched off
with TROFF.

Line numbers are printed within square brackets. If the line does not
have a line number the physical line number from the start of the
program is printed preface by a comma.

The use of TRON in a program considerably slows down program
execution, even after a TROFF statement. For this reason all TRONs
should be removed from a program once it has been debugged for
maximum performance.

¢ Example

1000 TRON

1010 PRINT "In problem area"

1020 INPUT a

1030 PRINT "Input";a,"Result";fnTest (a)
1040 TROFF

Page 278 Command Reference

UBOUND function

e Syntax

UBOUND (array name(,dimension])

e Effect

This function returns the largest available subscript of the array
(and optionally the dimension) specified.

e Comments

dimension is specifies the dimension of the array for which the
upper bound is to be returned. If dimension is not specified the
default is 1.

e Example

DIM An array%(10,20,30)
PRINT UBOUND (An_array%,2)

Result:

20

Command Reference Page 279

UCASES$ function

e Syntax

UCASES (string expression)

o Effect

This function returns a string with every alphabetic character in
upper case.

e Comments

Any characters in the range 'a’ to 'z’ inclusive are converted to 'A' to 'z’
as required. All other characters are left alone.

e Example

' the array must be passed by reference, hence VARPTR
' 1 defines the number of dimensions

DEF FN find(a$,VARPTR array$(1l))

LOCAL i, f

£=0

FOR 1=LBOUND (array$) TO UBOUND(array$)

IF UCASES (f$)=array$(i) THEN f=i: EXIT FOR

NEXT 1

FNfind=f

END DEF

Page 280 Command Reference

VAL function

e Syntax

VAL (string expression)

e Effect

This function returns the numeric value of string expression.

e Comments

This function parses string expression looking for a sequence of
characters that can be interpreted as a number. VAL will stop reading
the string upon finding the first character that cannot be recognized
as a number. Leading blanks, tabs, and CR-LFs are ignored. VAL
returns a double-precision number but it can, of course be assigned
to a variable of less precision.

e Example

addr$=" 26 Church Lane"
num%=VAL (addr$) 'will be 26

Command Reference Page 281

VARPTR function

e Syntax

VARPTR (variable name)
or

VARPTR (#channel)

o Effect

This function returns the address in memory of the variable
variable name, or of the input/output buffer.

e Comments

The address returned is a long integer. VARPTR may be used on any
numeric variable type; use SADD to find the address of strings. To
find the address of an array, specify the first element in the array.

Be careful to use VARPTR just before the returned address is to be
used. Local numeric variables and all strings and arrays may not
remain in the same place for the duration of the program.

VARPTR with a channel number as a parameter returns the address
of the input/ output buffer for an already OPENed channel.

VARPTR will always return an even address.

The keyword VARPTR is also used in function definitions to denote
variable parameters (as opposed to value parameters).

¢ Example

Number% = 7
Addr& = VARPTR (Number%)
PRINT HEXS$ (Addr&)

Result:

6A558

Page 282 Command Reference

VARPTRS function

¢ Syntax

VARPTRS (subname)

e Effect

This function returns the address in memory of the sub-program
subname.

e Comments

The address returned is a long integer. This can be used in
conjunction with CALLS. The sub-program should have no
parameters.

Note: this is for advanced programmers only.

e Example

r%=PEEKW (SYSTAB)

SELECT CASE r%

CASE 1: change&=VARPTRS (change high)
CASE 2: change&=VARPTRS (change med)
CASE 4: change&=VARPTRS (change low)
END SELECT

Command Reference Page 283

WAVE statement

e Syntax

WAVE voice, {wave array|SIN}

* Effect
Controls the waveforms used by the SOUND statement.

e Comments

voice specifies the audio channel to use.

If the second parameter is SIN then the sine function is used to define
the waveform. If an array is used it should have at least 256

elements. Elements within the array should be in the range -128 to
127.

e Example

WAVE 1, SIN
WAVE 2,wave table

Page 284 Command Reference

WHILE...WEND
statement

¢ Syntax

WHILE condition

[statements]
WEND

o Effect

A series of statements are executed in a loop until condition
becomes false.

e Comments

While condition is true, the statements between WHILE and WEND
are executed.

WHILE...WENDs may be nested; a WEND will match the last WHILE.

Be careful not to begin a WHILE...WEND loop from within it (e.g. due to a
GOTO).

DO...UNTIL and REPEAT loops are more general versions of the while
loop.

¢ Example

A%=0
WHILE A%<10
INCR A%
PRINT A%;
WEND
Result:

1 2 3 4 5 6 7 8 9 10

Command Reference Page 285

WIDTH statement

e Syntax

WIDTH f#channel_number,] width [, tab_setting]
WIDTH LPRINT width [, tab_setting]

WIDTH string expression,width [,tab setting]

e Effect

These statements assign a line width to the specified file, screen or
printer.

¢ Comments
The following parameters are valid for this statement:

width This sets the width for output to the
screen.

#channel number,width This sets the width of output to
channel number to the specified width.
Note that the # is compulsory.

tab setting sets the length of a tab; default is 14.

string_expression Is used to set the width and/or tab setting
for a device. i.e. one of SCRN,LPT1,cOM1. This
will affect only channels that are
subsequently opened; it does not affect
currently open channels.

Specifying LPRINT controls the width and tab _length of any output
to the printer.

If a width of 255 is specified then the width is set to 'infinite'; that is
BASIC never inserts line-feeds during output.

e Example

WIDTH 76 'sets an 80 column screen

WIDTH 61 'sets a 60 column screen

WIDTH LPRINT 40,8 'set printer output to 40
'columns and tab length of 8

WIDTH "LPT1%, 40,8 'the same

Page 286 Command Reference

WINDOW statements

e Syntax

WINDOW OPEN id[, (title stringl [, (x1,yl)-(x2,y2)]
[, (typel [, screen id]]]]

WINDOW CLOSE id

WINDOW OUTPUT id

o Effect

Creates and closes windows; WINDOW OUTPUT changes the current
window.

e Comments

Most commands require a window id, which is a number used to
identify each window, ranging from 1 to 8 inclusive. By default when
program starts it opens window id 1 to be a total of 640 by 200
pixels.

All PRINT, INPUT and graphics commands use this window, known as
the current window, until directed otherwise.

WINDOW CLOSE id
This closes the window with the given id.
WINDOW OUTPUT id

This makes the given window the current one. All PRINT, INPUT and
graphics commands will go to it.

WINDOW

This is the most complex form of WINDOW statement and creates a
window of the given specification All parameters (except id) are
optional and if all are omitted then the existing window is made the
active window.

Command Reference Page 287

title string will be used as the window's title bar; the co-ordinates
(x1,yI) describe the position of the top left of the window and co-ords
(x2,y2) describe the position of the bottom right of the interior of the
window. This rather bizarre way of describing windows is compatible
with the interpreter but can be overridden (see below). The default
rectangle is either a full window based on a 640x200 Workbench
screen or the full screen size. The type parameter specifies the
gadgets associated with the window and is made up by adding
different components together as required:

Value Meaning

1 Window size can be changed using the mouse and sizing
gadget

2 Window can be moved around using the title bar

4 Window can be moved in relation to other windows using the

normal window gadgets

8 Window can be closed by clicking on the close gadget (will only
be noticed if event checks are on, see Appendix A)

16 Contents of window re-appear after the window has been
covered by other windows. If used in conjunction with type-1
BASIC reserves enough memory for the window to grow to
the full size of the screen

32 Don't make the window ‘gimmezerozero'. This makes window
handling much faster, but has the disadvantage that nothing
prevents you drawing all over your window borders.

64 Backdrop window; a window that is always at the back of the
screen display, like the disk icon display in the Workbench.
Makes most sense when used in conjunction with type-32
and type-128 and in a screen other than the Workbench.

128 Borderless window; no border is drawn around it; best used
in conjunction with type-32 and -256.

256 What we consider ‘sensible’ window co-ordinates; using this
type changes the interpretation of (x2,y2) such that x2 is the
complete window width and y2 the height.

Types 32-256 are HiSoft BASIC Professional extensions, not
available in the interpreter. Some experimentation is worthwhile to
get the exact type of window you require. The default value is 31.

Page 288 Command Reference

screen_id refers to a screen created with the SCREEN statement and
should be from 1 to 4, or -1 to indicate the Workbench screen (the
default).

e Example

SCREEN 1,640,200,2,2

WINDOW 1,,,16+32+64+128+256,1

LOCATE 10,50

PRINT "I am not the Workbench!™"

WINDOW 2, "Ordinary", (0,20)-(320,100),,1

Command Reference Page 289

WINDOW Function

e Syntax
WINDOW (n)
e Effect

This function enables certain information to be found about windows
that some applications may find useful. The parameter n determines
the type of result as follows:

Value Result

0 The window id of the active window, or O if the active window is
not one of the program's windows.

1 The window id of the current output window

The width of the current output window

The height of the current output window

The x co-ordinate where the next character will be drawn
The y co-ordinate where the next character will be drawn

The maximum legal colour for the current output window

N OO0 g e WwN

A long integer pointer to the Intuition window for the current
output window. If the window has been closed this returns O.

8 A pointer to the RastPort for the current output window (or 0 if
it has been closed).

e Comments

For further details of window pointers and rastports, please see
technical documentation regarding Intuition and the graphics
library.

The interpreter returns inconsistent results for values of n from 0 to
6 when the window is closed.

Page 290 Command Reference

WRITE statement

e Syntax

WRITE [expressi oanist]

e Effect

This statement prints the data specified in expression 1ist to the
screen.

e Comments

This statement is similar to PRINT. If expression list is omitted, a
line-feed will be printed to the screen. All expressions must be
separated by commas. These commas are printed as well. Semi-colon
may be used instead of comma; this also outputs a comma.

Strings printed using WRITE are quoted, and numbers printed using
WRITE do not have leading or trailing spaces, unlike PRINT.

A line-feed is always output at the end of a WRITE statement.

e Example
A% = 24

B$S = "STRING!"
PRINT A%, BS
WRITE A%, BS

Result:
24 STRING!
24, "STRING!"
Command Reference Page 291

WRITE# statement

¢ Syntax

WRITE #channel number, expression list

¢ Effect

This statement writes the data specified by expression_list toa
sequential file.

e Comments

WRITE# differs from PRINT# in the same ways as WRITE differs from
PRINT. WRITE# has the advantage that data can be read back from the
file with the equivalent INPUT# statement; this is not normally the
case for PRINT.

For further details, please consult the PRINT# and WRITE entries.

e Example

OPEN f$ FOR OUTPUT AS #1
FOR i=1 TO 10
WRITE #1,1i,CHRS (i+"a"$%)
NEXT i
CLOSE #1
OPEN f$ FOR INPUT AS #1
WHILE NOT EOF (1)
INPUT #1,a,a$
PRINT a,a$
WEND
CLOSE #1

Page 292 Command Reference

Appendix A
Compiler Options

Meta-Commands

Meta-commands are special compiler commands that cause things
to happen during the compilation - they do not produce instructions
directly in the compiled code. Meta-commands are specified by
following a REM statement (or quote ') with a dollar sign.

[REM $EVENT ON/OFF

In order for a compiled program to respond to events, that is the
statements ON MOUSE GOSUB, ON MENU GOSUB, ON COLLISION
GOSUB, ON TIMER GOSUB, ON BREAK GOSUB and the closing of
windows with the mouse, event checks must be enabled. This
increases program size and execution time, but is the price that must
be paid for such powerful statements. It is possible to enable and
disable these checks as required during the program for maximum
efficiency. For example if a complex calculation was being performed
in one section of the program it would make sense to place a REM
$EVENT OFF at its start and a REM $EVENT ON at its end. If in the off
state then events are remembered but not acted upon, until checks
are turned on again.

[REM S$INCLUDE filename]

This command lets you include another BASIC source file within the
current compilation, just as if it were there in the source. This can be
used for using common modules between different programs, or for
breaking up larger programs into modules.

Options Page 293

[REM $OPTION option_list |

This command lets you specify the various compiler options. Each
option is denoted by a letter then, optionally, a + sign to indicate on,
or a - sign to indicate off, or a number in the case of some options.
Individual options should be separated by commas. For example the
line

REM SOPTION o+, a-

turns overflow checks on and array checks off. Options contained
within programs like this override any chosen at the time of
compilation, via the Options dialog box. The available options are
discussed below.

Compiler Options

HiSoft BASIC Professional has a large range of options that can be
used to control various features in compiled programs. There are two
ways these options can be specified: in the program itself, using the
$OPTION meta-command; and at compile time, by clicking on the
various radio buttons in the large dialog box.

[Array Checks (A) | |

With array checks on all array accesses are checked to have the
correct number of dimensions, and subscripts are checked to ensure
they are within the range specified in the DIM statement. In addition
any reference to an un-dimensioned array will dimension it. For
example the program segment

DIM a%(10)
a%(20)=10

with checks on will produce an subscript out of range error. With
array checks off there are no checks at all, even on the existence of
arrays. If you use an invalid subscript you are likely to destroy
something else in memory, and if you try to use un-dimmed arrays
you will probably crash the machine, not even getting a Guru.

Page 294 Options

There is an appreciable speed improvement (though an increase in
program size) with checks off, particularly with one-dimensional
integer arrays, but this should only be done when your are confident
your program works perfectly. Destroying random areas of memory
may not be immediately noticeable and may manifest itself some
time later in unexpected ways. If you turn array checks off then
OPTION BASE 0 is forced throughout your program.

'Break Checks (B) |

This option allows a user to break out of a compiled program at
certain times. With the option on ctrl1-C or A-period will abort a
running program. Checks are made during INPUT statements, the
INKEY$ function and at the start of each line if event checks are
enabled (see above). If you want to allow the program user to break
out at other times include a line such as

dummy$=INKEYS

at suitable places in your program. There is no noticeable speed
degradation or program size difference with this option on.

Note that this option will override any ON BREAK GOSUB statements.

[Error Messages (E) |

This option tells the compiler to include within the compiled program
a list of textual error messages to be produced after a run-time error
occurs. With the option off just a number will be printed in the event
of a run-time error, which can be looked up in Appendix B. Turning
this option off results in a smaller program file if stand-alone mode
is used.

icon File (G) |

Normally when a program is compiled to disk an icon is created for
it, if one does not already exist. Specifying option G- will disable this
icon, useful for CLI-type programs. To stop running programs
creating icons for their data files you should change the required
SYSTAB table entry (see SYSTAB in Command Reference).

Options Page 295

[Keep Size (K) |

This option specifies that a program will initially use a particular
amount of memory, the rest left available to the system. If you try to
keep more memory than there is available then the error
Insufficient Memory will appear during program initialisation and
execution aborted. The default value is 20k, this area being used for
the run-time system globals, global numeric variables and the BASIC
heap. The heap itself is used for string variables,I/O buffers and all
types of arrays. The minimum value is 10k. For example, to increase
the heap size to 40k the line would be

REM SOPTION k40

ILine Numbers (N)

This option adds line number information into your program, which
can be very useful while debugging your program. With the option on
then after a run-time error the physical line number will be printed
and ERL will contain the logical line number. With the option on
program size is increased by 6 bytes for each non-blank line and
there is a resulting degradation in program speed.

'Linkable Code (P)

When compiling to disk the compiler normally generates a directly-
executable file, but to link with C or assembly-language routines the
compiler can generate linkable code. This option is best used in
conjunction with the F option, for example

REM SOPTION P+,FTEST.OBJ

For details of interfacing with other languages, see Appendix E.

Page 296 Options

|Output Filename (F)

When compiling to disk the compiler will normally create a file based
on the name of the source file, or NONAME if the source has yet to be
saved. This option allows an explicit output filename to be specified.
This option has no effect if compiling to memory. Unlike other
options this must be the last on a line, for example:

rem SOPTION O+,FDF1:TEST

|Overflow Checks (O)

An overflow normally occurs when a numeric value exceeds its
specified range. These ranges are shown in the following table:

% integer -32768 to 32767

& long -2147483648 to 2147483647
! single -9.2E18 to +9.2E18

double -1.8D308 to 1.8D308

For example, the statement
1%=32000+10000

will produce an overflow as 42000 is too large to fit into an integer.
With this option on an extra 2 bytes are used for each maths
operator and some I/O operations and there is a slight speed
degradation. The option should be turned off only after you are sure
your program is bug free. Note with checks off the results of
calculations that result in overflow are not defined.

Options Page 297

IStack Checks (X) |

With this option on additional checks are made on the integrity and
position of the machine stack. The machine stack is that used for
return addresses after GOSUBs, function calls and sub-program
calls. It is also used for local numeric variables and by the run-time
system. With checks on, the stack is checked before a RETURN
statement is executed to ensure that it is sensible to do so; if not the
error RETURN without GOSUB will occur. With the option off, no
checks are made and a RETURN done out of context will cause
unpredictable results. If the machine stack should ever run out it will
probably cause a Guru, but with checks on the error Stack overflow
will occur. If you have a heavily recursive program you may need to
increase the return stack size, detailed later in the Changing Stack
Size section.

|Stand-Alone Code/Shared Library (L)]

This defaults to Shared Library mode (L+) which reduces program
size and memory usage. For stand-alone code use the L- option
which generates completely stand-alone files, for further details see
the Shared Library vs Stand-Alone section later.

[Symbolic Debug (S) |

This option is for those programmers with a knowledge of assembly-
language who wish to investigate compiled programs using a low-
level debugger, such as MonAm2 supplied with Devpac Amiga. With
this option turned on, programs compiled to disk have the run-time
system's symbols included within the output file for investigation by
debuggers.

lUnderlines (U)]

This is an option to maintain compatibility with some dialects of
Microsoft BASIC. With this option on, HiSoft BASIC Professional
allows underlines in variables and procedure names. With the option
off, underlines can be used immediately after a reserved word or
identifier, Microsoft style. See Chapter 5 for more information.

Page 298 Options

|Variable Checks (V) |

This option makes the compiler look for undeclared variables, a
common source of bugs in BASIC programs. This only works for
variables referenced within sub-programs or functions. For example,
this program was mis-typed and with variable checks on the
programmer will be alerted:

SUB initialise(mem%)
SHARED values%()

LOCAL 1%

DIM values% (mem%)

FOR i%=1 TO mum% deliberate mistake
values% (1%)=1%

NEXT 1%

END SUB

Checks should be normally be on if you are compiling structured
programs, but old fashioned BASIC programs should have the
option off.

'\Warnings (W)

If the W+ option is specified then the warning messages normalily
produced by the compiler will be suppressed.

[Window Defeat (Y)]

If the Y+ option is specified then the default window will not be
produced at the beginning of a program. See the Defeating Initial
Window section.

Advanced Options

The following options are intended for more advanced programmers
to customise a compiled program more exactly to their needs. If you
don't understand them then it is unlikely you will need them.

Options Page 299

[Temporary String Descriptors (T) |

In the highly unlikely event of the error string expression too
complex appearing, the number of temporary string descriptors
may be increased from the default value of 15, for examples

REM S$OPTION T30

[Maths Stack Size (M)]

The maths stack is used for storing temporary numeric values
during calculations and function calls. If it should ever run out, the
global workspace will be corrupted. The minimum value is 32 bytes
and defaults to 256 bytes.

Option Summary

The following tables summarise the compiler options and the letter
used to describe them, in the SOPTION meta-command.

|Once-only Options

Array checks

Error messages
Icon Files
Linkable/executable
Output filename F filename
Stack checks
Stand-Alone/Library
Variable checks
Window Defeat

T o® >

>

= <

Page 300 Options

|Changeable Options

Break checks B
Line numbers N
Overflow O
Underlines U
Warnings W

Once only options have a global effect - that is they are in effect or not
for the whole program. Changeable options are different because
they can be turned on and off through your program, so some areas
can have an option on, while others can have it turned off.

Using HiSoft from the CLI

In addition to the integrated, Intuition-based version of the compiler,
you can run both the editor and the compiler from the CLI or Shell.
This is is intended for users who have committed editor preferences,
or who prefer a CLI-type of programming environment.

[Using the Editor from the CLI]

It is recommended that the editor be renamed to save excessive
typing in the CLI, with a line such as

rename "HiSoft BASIC Professional" hb

It can then be invoked with the command hb, optionally followed by
the filename to be edited. When invoked from the CLI the editor does
not create icon files when saving text files, though the compiler will
do so for compiled programs (unless the G option is used). The editor
needs to load the compiler during its initialisation, and it searches
for the file HB.Compiler firstly in the current directory, then in the
c: directory.

Options Page 301

[Using the Compiler from the CLI

|

The compiler may also be renamed, though the editor will not find it
if it is,. If using the Shell then an alias would make sense, for example

alias hbc hb.compiler
The command line takes the form of
hb.compiler source filename [optlons]

The source filename should be the name of the BASIC source file
requiring compilation, and .BAS is assumed as an extension, but
may be set explicitly to be something else. The options should be
specified starting with '-' and are the same as those described
previously. One important difference between this and the integrated
compiler is that all options default to off when invoking the compiler
directly.

For example, the command
hbc DEMO -O+,B+,FTEST

will compile the file DEMO. BAS with overflow and break checks on and
create the output file with the name TEST.

Changing Stack Size

By default programs running under both the Workbench and CLI
have 4000 bytes of stack but this may on occasions need to be
increased. The method depends on the environment under which
the program is running:

When run from the Workbench the stack size may changed by
selecting the program icon then clicking on Info from the Workbench
menu. The STACK entry may then be changed as required.

When run from the CLI the stack size may be changed with the
STACK statement, before running the program.

If you wish to change the stack size of programs running from the
Editor, you will have to change the stack size of the editor itself. This
can be done using either of the methods described above. A program
may check it's own stack size using FRE (-2) at the beginning of the
program.

Page 302 Options

Shared Library vs Stand-Alone

Compiled programs may either use a special library file or include
the required parts of the library into the program itself. Which
option is required depends on the application itself and the
environment under which it is intended to run.

[Shared Library (Option L+)

This is the default mode for compiled programs; it means that
programs are smaller than true stand-alone programs but they
need to access the HiSoft BASIC Professional library. This is included
on our Disk 1 in the 1ibs directory, which you cannot see from the
Workbench because it has no icon. It is called hisoftbasic.library
and is like all other proper Amiga libraries, being re-entrant and can
be shared between multiple BASIC programs, including the compiler
itself. This option should always be used when compiling to memory
from the editor as it saves valuable memory.

Advantages Smaller program files; less memory used when
using integrated compiler

Disadvantages Needs additional file; if library is upgraded then
a re-compilation may be required

|Stand-Alone (Option L-)

This generates true stand-alone programs that do not need the
special HiSoft BASIC Professional library file described above. The
compiler builds in only those parts of the library that are required
into the program file itself.

Advantages No additional file needed; independent from
library changes

Disadvantages Occupies more disk space; with multiple
programs takes more memory space

Note that even stand-alone programs may require some regular
Amiga libraries to be present on disk, for example
mathieeedoubbas.library and mathieeedoubtrans.library. To
create icon files when using the OPEN statement the icon.library
will also be needed.

Options Page 303

Defeating the Initial Window

Normally when a compiled program starts up an initial window is
created, which will be the same as that created with the statement

WINDOW 1,"Compiled with Hisoft BASIC", (0-0)-(640,200),31+256

i.e. a window the exact size of a normal non-PAL Workbench screen
with a full complement of gadgets. The default window is not the full
size of larger Workbench screens (e.g. PAL) to remain compatible
with the interpreter.

|Opening your own Initial Window |

Specifying the Y compiler option will disable this initial window,
which allows a window to exact specification to be opened. If you try
to PRINT or INPUT before you have opened your own, either the CLI
window will be used (see below) or the error Bad channel number will
occur, referring to #257. This is because windows are referred to
internally with channel numbers starting at #257 for window 1.

|Creating ClI-type Programs

Another use for this option is to create programs to run from the
CLI If this option is used in a program run from the CLI then all
PRINT and INPUT statements will take place via the CLI window and
any indirection will be respected. Note that the BASIC CLI window
driver is (deliberately) very simple; statements like CLS, LOCATE and
all graphics commands will give run-time errors; if you need to
position the cursor or clear the screen then suitable ANSI codes
should be used. The INKEY$ function is not recommended due to the
way the console driver buffers input a line at a time.

If break checks are on and ctrl-c is pressed during console I/O (or a
BREAK command has been issued by another CLI) then the program
will terminate. If your CLI-type program has an icon file is it possible
to set up an automatic window for it when it is run from the
Workbench. To do this add a wiNnDow Tool Type specification, for
example

WINDOW=CON:0/0/640/200/Automatic Windows!

This is how the HB.Compiler program gets its CLI-type window.

Page 304 Options

Appendix B
Error Messages

AmigaDOS Error Numbers

This appendix details the AmigaDOS error numbers and their
meanings.

103

insufficient free store

out of memory

104 task table full limit of 20 CLIs

120 argument line invalid or too long when using CLI commands

121 file is not an object module 1t_}'iying to execute non-executable
ile

122 invalid resident library during

load

202 object in use such as a file by another program

203 object already exists

204 directory not found

205 object not found most commonly a file

206 invalid window in name specification

209 packet request type unknown

210 invalid stream component name name too long or contains ctrl
chars

211 invalid object lock

212 object not of required type t§.111ch as directory name instead of
ile

213 disk not validated disk is still being validated, or bad

214 disk write-protected

215 rename across devices attempted

Errors Page 305

216 directory not empty when trying to delete it

218 device not mounted after specifying a volume name
219 seek error

220 comment too big 181163 comments must be less than
221 disk full

222 file is protected from deletion

223 file is protected from writing

224 file is protected from reading

225 not a DOS disk

226 no disk in drive

232 no more entries in directory

Run-time Errors

A run-time error is an error produced by a running program; they
are distinct from errors produced by the compiler while compiling
your program which are detailed later in the Appendix. There are two
types of run-time error: fatal errors, produced when something goes
seriously wrong, and ordinary errors.

As a substantial part of the compiler is written in HiSoft BASIC
Professional it is possible for the compiler to generate these errors.

|[Fatal Run-time Errors |

These are shown in a similar way to a Guru in a red box at the top of
the screen, with these ominous words

HiSoft BASIC fatal error: <message> <, #line>
Don't panic - press left mouse button

Page 306 Errors

0000000000000800000000000000000000000000000

The <#1ine> part of the message will contain the last physical line
number, if the line number option was on. Pressing the left mouse
button should terminate the program. These are known as fatal
errors because ON ERROR cannot trap them - the problem is
considered too serious to continue running the program. Fatal
errors that can occur are as follows:

Cannot create HB.mainport

Very unlikely, this means the program's main message port cannot
be allocated, normally because memory is extremely low.

Cannot open mathieeedoubbas.library

This library is required for double-precision maths. Incidentally, the
Workbench 1.3 version (supplied on Disk 1) is considerably faster
than the older version.found on Workbench 1.2 disks.

Cannot open mathieeedoubtrans.library

This library is required for double-precision transcendental
routines, including trig functions, and is not present on ordinary
Workbench 1.2 disks because it is a new 1.3 library.

Memory List Corrupt

Either there is a bug in the run-time system, or something has
corrupted BASICs memory list. It is likely that the machine will
crash shortly after you left click, if not sooner.

No hisoftbasic.library

This occurs if a shared library-type program has been run and
cannot find the library file. It must be in the L1BS: directory.

Stack overflow

The machine stack has overflowed; see Changing Stack Size in
Appendix A.

String space corrupt
Either something has corrupted the string space (i.e. the heap) or

the garbage collector has failed. If this occurs in a repeatable fashion
please contact us.

Errors Page 307

Unexpected Exception

The operating system has tried to put up a Software error - task
held System Requestor, but BASIC intercepts this. This can be
caused by many things, but most common are address errors,
caused by accessing odd-aligned memory (e.g. PEEKL (45)) and illegal
exceptions, caused by stack overflow or memory corruption. If the
line number is not a big enough clue as to the cause then a low-level
debugger can be used to catch the exact cause of the exception, if the
Symbolic Debug option is used.

[INon-fatal Run-time Errors]

Non-fatal run-time errors are reported in a System Requestor, with
a message, module name, line number and channel number,
together with an Abort program gadget. Some fields will not appear
in messages, depending on the compiler options used.

Thee errors are listed in numeric order for easy reference when
messages are not included in the compiled program and for the ERR
function. Following the numeric list there is an alphabetic list with
explanations as to their meaning,.

RETURN without GOSUB
Out of data

Illegal function call
Overflow

Out of memory

N O e W

9 Subscript out of range

10 Redimensioned array

11 Division by zero

13 Type mismatch

16 String formula too complex
20 RESUME without error

31 Wrong number of subscripts
49 Volume not found

50 FIELD overflow

51 Internal error

52 Bad file number

Page 308 Errors

53 File not found

54 Bad file mode

55 File already open

57 Device 1/O error

61 Disk full

62 Input past end

63 Bad record number
64 Bad file name

67 Too many files

68 Device function unavailable
70 Disk write protected
75 Path/file access error
76 Path not found

77 Break pressed

|[Run-time Errors Alphabetically

Bad file mode

You are trying open a channel with an invalid mode string, or trying
an input/output operation on a channel that cannot support it, e.g.
PRINTing to a file opened for INPUT.

Bad file name

The filename is invalid, either because it is too long or because it
contains invalid characters.

Bad file number

Valid channel numbers are from 1 to 255 inclusive. In addition
windows use channel numbers 257 upwards.

Errors Page 309

Bad record number

A record number of 0 is not valid in a PUT or GET statement.

Break pressed

ctrl-C or A-period was pressed This error cannot be trapped by ON
ERROR but can with ON BREAK - if you wish ctrl-C to be ignored then
turn the break checks option off.

Device function unavailable

You are trying an operation on a device that cannot support it, such
as drawing a circle on a disk file.

Device 1/O error

A physical error has occurred during an input/output operation.

Disk full

Disk write protected

Division by zero

FIELD overflow

A FIELD statement has attempted to use more space than specified in
the record size when OPENed, or PRINT# to a random file has filled the
current record.

File already open

Another program has probably opened the file.

Page 310 Errors

File not found

llegal function call

This error can be caused by a multitude of things and means a
parameter was not in the range required by a function. The module
name and line number can be used to track down the error.

Input past end

You have tried to read past the end of a file.

Out of data

A READ has been attempted when no more DATA is available.

Out of memory

Normally this means the heap is full, which is the area of memory
used for storing strings and arrays. This can be increased by the use
of the Keep option described in Appendix A. It can also mean that
the system has run out of memory while BASIC was trying to
allocate, for example, some chip memory to do a graphic operation.

Overflow

A result of a numeric calculation is too large to fit into the required
type. This can occur when you don't expect it, for example the line

test!=32767+1

will produce it, as two integers are added together using integer
arithmetic. The correct result can be obtained by forcing single-
precision arithmetic:

test!=32767!+1

Errors Page 311

Path not found

An invalid path was specified in a DOS command.

Path/file access error

You are not permitted to do that operation with that file, such as
trying to KILL a read-only file.

Redimensioned array

An existing array must be ERASEd before DIMmed for a second time.

RESUME without error

A RESUME command will only work from within an ON ERROR
handler.

RETURN without GOSUB

A RETURN statement was executed but not from a section of the
program which had been called with GOSUB. This error will only
occur with the stack checks option turned on (see Appendix A).

String formula too complex

String operations use temporary descriptors for intermediate
results, and it is remotely possible to run out and produce this error.

Subscript out of range

An array subscript used is larger than that specified in the
dimensioned statement, negative, or O if OPTION BASE 1 is used.

Too many files

A maximum of 255 channels may be opened at once from BASIC.

Page 312 Errors

Type mismatch

A READ was attempted into a numeric variable but the data was
found to be a string.

Volume not found

Wrong number of subscripts

An array has been referenced with a different number of dimensions
to the number last DIMmed. Unlike other compilers this is a run-time
error as HiSoft BASIC Professional arrays can be REDIMmed with
different numbers of dimensions.

Compilation Errors

When the compiler detects an error or something that may be an
error (a warning) it generates a message.

The message is prefaced by the error number and followed by the line
and file in which the error was detected. In the case of warnings the
compiler will continue automatically. After an error it will ask you if
you wish to continue. If you type n or N (for no) you will be returned to
the editor. If you hit any other key compilation will continue.

When you return to the editor the cursor will be positioned on the
line of the first error and the error message will be displayed in the
status line; you can use Alt-J to move to the next error. If you have a
large number of errors the editor may not be able to remember them
all. If you insert or delete lines subsequently, Alt-J's will go to the
wrong line. However if you have only inserted one or two lines it
should be clear which is the offending line. Simply compile the
program again if things get confusing.

Normally the error message should be fairly obvious. The following
list gives some extra hints for some of the error messages.

Errors Page 313

Occasionally the compiler will spot errors somewhat later than you
might expect. This is usually because the text up to the point it has
read is allowed in certain contexts. If you have missed something out
at the end of a line, then the error may be detected at the beginning of
the next line. Note that, except in the case of missing sub-programs,
line numbers or labels, the error in your program can not be after the
point where the error was detected.

On occasions the compiler will generate more than one error
message as a result of a single error in your program; do not be put
off by this. If you get confused, just re-compile.

If you have a very badly formed source file, the compiler may slow
down considerably. It is probably a good idea to type n to the continue
prompt.

It is possible that some error messages may have been added to the
compiler; only if an error is generated without an error message is
this a possible bug in the compiler. If you do get an error number
without a message, please tell us; see Appendix |

|Compiler Error Messages]

In the following list many of the messages give an identifier, reserved
word or symbol, this is displayed instead of the % in the message.

2 ON... should be followed by GOTO/GOSUB

May occur if the expression is misformed.

3 Undefined identifier %

Occurs within sub-programs and functions if the V option is
on. See Appendix A.

4 Unterminated string in data

Page 314 Errors

Line number/label missing in GOTO/GOSUB %
found instead

This also occurs in ON GOTO/GOSUB/ERROR and RESUME
statements if a line number or label is missing.

END DEF assumed

END SUB assumed

Error messages 6 and 7 both occur if you attempt to nest
sub-program or function definitions.

END DEF where END SUB expected

END SUB where END DEF expected

10

Error messages 8 and 9 are both warnings.

Letter expected after DEFINT etc

11

Letter expected after - in DEFINT etc

13

Too many ENDs/NEXTs or operand missing

14

This error is generated in two different contexts, either when
you have too many ENDs or NEXTs or sometimes when
omitting one of the operands to a dyadic operator (e.g. *) in
an expression.

Numeric expression expected (not string)

Many possible causes.

Errors

Page 315

15) expected instead of %

Many possible causes.

16 Unterminated string
17 Unexpected character in source
This is a warning, the offending character will be ignored.
19 Bad line number (% is not positive)
Or 0 not allowed in this context.
20 Bad line number (% is too large)
21 Bad line number (% has fraction/ exponent)
Or is far too large.
22 Line number % not found
23 Line number % not found
24 Parameter (%) may not be used as FOR loop
identifier
Use a local variable instead.
25 Name (not %) expected in parameter list
Page 316 Errors

26

Parameter % appears twice

28

) expected at end of parameter list. % found
instead

29

Can also be caused by missing out the comma.

Name expected instead of %

30

Many possible causes.

Statement only allowed in sub-program or
function

32

These statements are LOCAL, SHARED, STATIC, EXIT DEF/SUB.

Label % defined twice

34

Line number/label expected instead of %

36

Can occur if an expression is badly formed in an
ON...GOTO/GOSUB.

Error during optimisation

37

END FUNCTION expected

39

Internal Error (bad source on pass 2)

Can occasionally be generated by very badly formed source.

Errors

Page 317

40

Expression mismatch

Normally caused by missing operands.

41

END FUNCTION expected before here

42

Expression too complex (too many
operators)

43

More than twenty operators pending.

Expression mismatch

44

Expression too complex

45

More than twenty operands pending.

Expression syntax

46

Expression syntax

47

Normally caused by missing out an entire expression.

FUNCTION or SUB expected before here

48

FUNCTION or SUB declared but not present

49

SUB name % used in expression

Page 318 Errors

50 Expression mismatch: % is not a unary
operator

51 Expression mismatch: No unary string minus

52 Expression mismatch

53 lllegal type combination

Two strings used with arithmetic operators other than +.

54 lllegal type combination (not string)

A string expression and a numeric expression have been
used with an operator.

56 lllegal type combination (not string)

String could not be coerced to numeric type.

57 % is not a variable or the current function

Using other function names is not allowed on the left hand
side of assignments.

58 Variable is wrong type

For example, if you pass a double array instead of an integer
array to a sub-program.

59 Open bracket expected instead of %

Many possible causes.

Errors Page 319

60

Comma expected instead of %

61

Many possible causes. Could be that an expression is mis-
typed.

Semi-colon expected instead of %

62

Many possible causes.

Extra characters at end of statement % is first

63

Perhaps you didn't expect the statement to be over so soon.
Check your expressions.

END DEF assumed at the end of program

64

END SUB assumed at the end of program

65

Code generation failed

67

This will normally be preceded by one or more code generator
errors; for example trying to compile linkable code into
memory, or disk full. If you get internal code generator
errors please make a note of the line number in the error
message. This error will usually be reported at or after the
very end of your program.

Bad option specified

68

(expected in CALL statement instead of %

When using the CALL statement for a sub-program with
parameters, you must follow the sub-program name with an
open parenthesis.

Page 320 , Errors

69 Subroutine % not found

To CALL a variable use CALL LOC.

72 = expected instead of %

Many possible causes.

78 FOR variables must be simple variables (not
% which is an array)

79 FOR variable % can't be a string

80 TO not % expected in FOR statement

Is your initial assignment to the FOR variable correct.

83 BASE not % expected after OPTION

84 OPTION BASE must be followed by the
number 0 or 1 not %

88 % cannot start a statement

89 Extra ELSE

90 ELSEIF must be followed by THEN not %

91 % not allowed after END

Errors Page 321

92 Mismatched NEXT should be %

93 END IF expected before here

94 END REPEAT expected before here

95 NEXT expected before here

96 END SELECT expected before here

97 WEND expected before here

98 LOOP/WEND expected before here

Errors 93 to 98 may occur if you have omitted the start of
the structured statement in the error line.

99 Name required after SUB or DEF. % found
instead

Is it a reserved word? See Appendix D.

100 Identifier % redefined

In sub-program or function definition.

102 Name expected. after LET (not %)

Page 322 Errors

103 GOTO, THEN or end of line expected
after IF expression not %

105 Unexpected END SUB or END DEF

Occurs when not in a function or sub-program definition.

106 CALL missing at start of statement

This is a warning. For more information see Chapter 5.

107 Unterminated control constructs

Occurs at the end of sub-programs, user-defined functions
and FOR loops. Normally means an END-something is
missing, or a NEXT.

108 Function or sub-program redefined in
library %

109 Unknown REPEAT loop in EXIT

110 Window statement misformed

111 Semi-colon or comma expected

Many possible causes.

112 REDIM APPEND of arrays of more than
one dimension not allowed

Errors Page 323

113 AS expected instead of %

Occurs in OPEN, NAME and FIELD statements. Perhaps an
expression is wrong.

114 CONSTants must be integers not %

115 CONST % can not be assigned to

116 - expected instead of % in graphics GET

118 % is not a label

Your source is probably severely malformed.

119 (expected instead of % in graphics GET
or PUT

120 Array expected but ordinary variable %
found

121 Argument to VARPTRS must be a
subroutine name not %

123 INCLUDE file % not found

125 Value parameter must not be array

Page 324 Errors

126 LOCATE, SOUND or WAVE statement has
too many parameters

127 Library must be string literal not %

Have you remembered the quotation marks?

128 Cannot open library

129 Library badly formed

Should never occur.

130 Too many parameters to COLOR
statement (max is 3)

131 Sub-program % not found

To CALL a variable use CALL LOC.

132 GOTO expected after ON ERROR not %

134 SELECT variable must only be a simple
variable not %

135 LCOP/WEND expected before here

Errors Page 325

Errors

Page 326

Appendix C
Converting Programs
from Other BASICs

Introduction

This Appendix is intended for use by programmers wishing to
convert various forms of BASIC into HiSoft BASIC Professional. It
starts with details about the AmigaBASIC interpreter, then has
general notes about conversions followed by sections for particular
common BASIC implementations.

AmigaBASIC Compatibility

HiSoft BASIC Professional is designed to compile most existing
AmigaBASIC programs unchanged; this section details areas of
incompatibilities and possible problems. Note that all references to
AmigaBASIC refer to version 1.2, the latest available at the time of
writing.

|De-tokenising

Before trying to compile any program from the interpreter, the
source must be converted to ASCII instead of the special tokenised
form that the interpreter uses to store its files. To do this , load the
interpreter, then load your program. Select the Output window then
type a line such as

SAVE "filename.bas",a

where "filename.bas" should be changed as required. The , a at the
end is important - it tells the interpreter to save the file as ASCII. We
strongly recommend that source files follow the .bas naming
convention, so you can tell them apart from compiled versions, for
example. The file so created can then be used by HiSoft BASIC
Professional and you can load it back into the interpreter at any time
without conversion because HiSoft BASIC Professional only uses
ASCII files and the interpreter can read them directly.

’

Converting Page 327

Unimplemented Features

At the time of writing, the following features of AmigaBASIC are not
implemented in HiSoft BASIC Professional:

COMMON, RESUME NEXT

In addition, interpreter only statements such as LOAD, SAVE etc are
not implemented as they make no sense in a compiler environment.

Compatibility Issues

We have tried wherever possible to be compatible with the interpreter
in both source syntax and run-time emulation.

In terms of source syntax, HiSoft BASIC Professional accepts
practically all legal AmigaBASIC syntax, except that you may be
using a variable which has the same name as one of the additional
reserved words, such as SYSTAB. When trying to compile existing
programs that seemed to run perfectly under the interpreter, the
compiler may find errors the interpreter missed, normally in a
section of code that seldom gets executed. Note that HiSoft BASIC
Professional does not allow a variable to be the same name as a
program label, but this is unlikely to cause problems.

In terms of run-time emulation, we have tried to emulate the exact
actions of the interpreter, where it made sense to do so. We
discovered several undocumented features of the interpreter during
the development of the compiler (e.g. FRE (-3)) and emulated those
found. However there are bound to be circumstances that we did not
try and if you rely on an undocumented feature it may not work the
same under the compiler. There are some. features of the run-time
system we decided not to emulate, such limiting the maximum
window size to non-PAL sized screens and various guru-type bugs.

Note that double-precision variables are stored in a different order in
memory between the compiler and the interpreter, but this will only
effect programs doing rather nasty things with VARPTR. In addition,
single-precision numbers are stored in a completely different format
(though are still 4 bytes in size) which has less range than that used
by the interpreter. When reading and writing random-access files
(using MKD, MKS, CVD and CVS) we are as compatible as possible
with the interpreter though, except for the range limit on single-
precision numbers.

Page 328 Converting

Also note that VARPTR returns a pointer to a string descriptor, but
the string descriptors themselves are very different under the
interpreter and the compiler. Programs that use VARPIR to directly
adjust string descriptors will not work without modification.

Extensions to AmigaBASIC

As well a emulating AmigaBASIC as closely as possible we also
extended it in many ways. Amongst the many improvements we
have made are:

. Full recursion of sub-programs and functions

. 32-bit hex, octal and binary constants

. Powerful DO...LOOP construct

. Much greater control over WINDOW types

. SYSTAB table for lower-level accessing mode

o COLOR statement allows control over drawing mode

Other Conversions

Most BASICs share a certain core of the language, no matter how
different they seem to be. PRINT always does the same thing, so does
INPUT and so forth. BASICs can differ by being machine specific,
ANSI standard, or conforming to a certain style (MicroSoft's
QuickBASIC and Borland's Turbo Basic are notable examples).

Whichever BASIC you are trying to convert a program from, you will
need to get the source into ASCII. Some BASICs (e.g. ST BASIC) use
ASCII for their programs anyway, but most interpreters use a
tokenised form that will come out as gibberish if loaded into the
editor. You should save your program from your BASIC interpreter
using an ASCII option, if possible.

Some things stand very little chance of being the same from one
BASIC to another, in particular internal floating point
representations and random-access file formats.

Converting Page 329

One thing to be aware of particularly is that string length limitations
found in other BASICs do not exist in HiSoft BASIC Professional. In
particular the LEN function can return a long integer as a result, not
just an integer as in other BASICs.

Old-Style Microsoft BASICs

Microsoft BASIC is the closest thing to a world standard for the
BASIC language and is the one we designed HiSoft BASIC
Professional around.

For this reason most versions of Microsoft BASIC should not
present problems converting to HiSoft BASIC Professional.
Programs written in the old-style BASICs, such as those found in
Commodore 64s and under CP/M should require little or no work to
convert, as long as machine-specific PEEKs and POKEs are avoided.
You can also save typing by not entering the line numbers that aren't
needed.

Most BASIC interpreters from other vendors are at least in part
based on the same principles as Microsoft so should also convert
reasonably easily.

New-Style Microsoft BASICs

The new style of Microsoft BASIC is defined by QuickBASIC versions
3 and 4 running on IBMs and compatibles. By new-style we mean
support for structured programming such as sub-programs and
parameter passing, CASE, REPEAT, DO etc. The main advantages of
Hisoft BASIC Professional that you can exploit when converting
programs from the IBM world are the large memory and greater
graphic support, in particular windows. In addition, recursive
programming techniques can be used.

At the present time HiSoft BASIC Professional is reasonably
compatible with QuickBASIC 3, excluding MS-DOS hardware-specific
functions, and has some of the features found in QuickBASIC 4,
such as constants and non-FN function names. However HiSoft
BASIC Professional does not yet support records.

In addition to this high degree of Microsoft compatibility, HiSoft
BASIC Professional also compiles many of the additional features
found in Borland's Turbo Basic compiler for the PC.

Page 330 Converting

.QQQCC‘A‘Q.O.QQ..C.CQO..O‘OO..OO..Q.O..O.CO

Appendix D
Reserved Words

The following is a complete list of the reserved words in HiSoft BASIC
Professional. These may not be used as sub-program or label names
and not normally as variable names. See Chapter § for more details.

ABS ACCESS AND APPEND AREA
AREAFILL A ASC AN AUTO
BAR BASE BEEP BINS BLOAD
BREAK BSAVE CALL CALLS CASE
CDBL CHAIN CHDIR CHR$ CINT
CIRCLE CLEAR CING CLOSE cLs
COLLISION COLOR COMMAND$ COMMON CONST
cos CSNG CSRLIN CVD CVFFP
oV cVL cvs DATA DATES
DECLARE DECR DEF DEFDBL DEFINT
DEFLNG DEFSNG DEFSTR DIM DO
ELSE ELSEIF END EOF EQV
ERASE ERL ERR ERROR EXIT
EXP FEXISTS FIELD FILES AX
FOR FRE FUNCTION GET GOSUB
GOTO HEX$ IF INCR INKEY$
INPUT INPUTS INSTR INT KEY
KILL LBOUND LCASE$ LEFTS LEN
LET LIBRARY LINE Loc LOCAL
LOCATE LOF LOG LOG10 LOG2
LooP LPOS LPRINT LSET MID$
MKD$ MKDIR MKFFP$ MKI$ MKL$
MKS$ MOD MOUSE NAME NEXT
NOT OBJECTxx OCT$ OFF ON
OPEN OPTION OR OUTPUT PAINT
PALLETTE PATTERN PCIRCLE PCOPY PEEK
PEEKB PEEKL PEEKW POINT POKE
POKEB POKEL POKEW POS PRESET
PRINT PSET PUT RANDOM RANDOMIZE
READ REDIM REM REMAINDER REPEAT
RESET RESTORE RESUME RETURN RIGHT$
RMDIR RND RSET RUN SADD
SCREEN SCROLL SELECT SGN SHARED
SIN SLEEP SOUND SPACE$ SPC
SQR STATIC STEP STICK sTOP
STR$ STRIG STRING$ SuB SWAP
SYSTAB SYSTEM TAB TAN THEN
TIME$ TIMER 10 TRANSLATES TROFF
TRON UBOUND UCASE$ UNTIL USING
VAL VARPTR VARPTRS WAVE WEND
WHILE WIDTH WINDOW WRITE XOR
Reserved Words Page 331

Reserved Words

Page 332

Appendix E
Assembly Language
Details

This Appendix is intended for assembly-language programmers and
details the memory maps and register usage of compiled programs
together with the creation and use of linkable code. If the previous

sentence didn't make any sense then stop reading this Appendix
now.

Code Generation

A BASIC source program is converted into true machine-code, there
are no P-codes or interpretive run-times. The code produced
distinguishes between program area and data area. Program area is
what is written to the disk or to memory and is position dependent,
relocated either by the AmigaDOS loader in the case of disk files or
the code generator itself with programs compiled directly to
memory. All program code is ROMmable, executes in user mode and
is compatible with 68010, 68020 and 68030 processors.

The figure overleaf shows the overall memory map of a compiled
program. Note that the run-time library code will either be in within
hisoftbasic.library or in a separate code hunk in the program file.

[Register Usage]

Several registers are committed to special purposes within a
compiled program. These are:

A3 - Library Pointer

In order to minimise the space and time taken for run-time library
calls, register A3 is dedicated to point to either a run-time jump block
(if using the shared library) or to the run-time library code hunk
itself, with a $8000 offset to allow a maximum of 64k for the whole
library.

Assembly Language Page 333

Library calls from within the compiled code are of the form
JSR -offset (A3)
Library calls from within the library itself do not use A3, they use

BSR statements and are resolved by the code generator during
compilation in stand-alone mode.

A4 - Local Variable Stack Frame

At the very beginning of functions and sub programs a LINK
instruction is done to allocate space on the stack for local variables
(and function results) and to establish a register that can be used for
accessing parameters. Only space for numeric variables are
immediately allocated using LINK; arrays and string descriptors are
allocated afterwards using a library call. For example a sub-program
which has one local integer variable starts with the instruction

LINK #-2,A4
Functions and sub programs finish with a corresponding

UNLK A4
RTS

A5 - Data Area Pointer

The startup code of a compiled program allocates its global area and
sets up A5 to point to its start. At the beginning of the area are the
run-time globals, followed by the descriptor table (descriptors are
described later). Next is the global variable area, used for storing
numeric variables. There is a 32k limit on the total size of these
globals, but is would take a massive unstructured BASIC program to
require such a number of globals.

A6 - Maths Stack

This is a special stack used for storing intermediate results of
numeric calculations.

Page 334 Assembly Language

A7 - Machine Stack

The regular machine stack used for return addresses and local
variables (using A4).

Code Hunk 1
Compiled Program No size limit
Code Hunk 2 or
hisoftbasic.library .
Run-time Library 64K limit

Global area
5 > f
Run-time Globals

Descriptor Table

32k limit
Global Variables

Maths Stack

The Heap

% uondog AQ peujwieiep ozis

Compiled Program Memory Map

Assembly Language Page 335

Low Level Debugging

It is possible to debug compiled programs at the machine language
level using a debugger such as MonAm2, supplied with Devpac
Amiga. If you do this it is strongly recommended that you use the
Symbolic Debug option when compiling, so that run-time labels will
be included in the binary file in the standard AmigaDOS format. In
addition this option stops the BASIC run-times from ‘stealing’
exceptions, so they will be passed onto the debugger.

If the program uses a shared library then the symbols will be of little
use to you, though the exception override will be most useful.

[Finding Your Way |

It can be tricky finding your way around a compiled program and it
is recommended that you also specify the Line Numbers option when
compiling. This option adds instructions of the form

MOVE.L #SAAAABBBB, (AS)

to the program. The hex number AAAA is the physical line number i.e.
the line number displayed by the editor, while the hex number BBBB
is the last actual line number given in the source. These can be very
useful for both finding particular lines and working out where you
are in the program.

The first instruction in a compiled program is always a MOVE.L
instruction setting up A3, followed by a jump around any DATA
statements. Various registers are then set up before a library call to
one of the startup routines. The startup routine itself should not be
single-stepped, but skipped over. Most JSRs can be skipped over, but
there is one notable exception to this: str_constant. Immediately
following it is a string literal and you should not try skipping over
the instruction (using Ctrl-T in MonAm) but single-step the call,
then skip over the calls it makes. Alternatively you can set a
breakpoint later on in the code after the string in memory.

Page 336 Assembly Language

Note that you may see NOP instructions within the compiled code;
don't be alarmed. These are produced by the code generator because
on its first pass it leaves room for a JMP absolute instruction when
program flow changes, but on pass 2 it notices that the destination
is within range for a four byte BRa, so it has to add the NoP (it does not
optimise to BRA.S as these take the same time to execute). As the
NOPs never get executed there is no speed penalty, but there is a size
increase. This is worthwhile; the result is that there are no size limits
on compiled programs.

The Heap and Descriptors

Crucial to the operation of HiSoft BASIC Professional compiled
programs is the area of memory known as the heap. BASIC is one of
two common languages (the other is LISP) that requires dynamic
garbage collection. Owing to the way strings in the language work it
is necessary to allocate memory for them as required, then, when it
runs out, to re-use all the memory no longer needed. This re-
allocation is known as garbage collection. Many compilers and even
some interpreters do not garbage collect and, as a result, certain
operations can cause out-of-memory errors even though there is a
lot of unused memory left.

HiSoft BASIC Professional has a very advanced memory
management system (which is hidden from the user normally)
whereby any memory allocation request can cause a garbage collect
to occur in order to satisfy the request. The heap itself is a large block
of memory from which allocations for string variables and arrays
take their memory.

At the bottom of the heap (low memory) are all the string variables,
while at the top are all the arrays. Strings work their way upwards,
while arrays grow downwards. Should they ever meet, a garbage
collect occurs which deletes all unused strings and moves existing
ones around as required. It is important to note that arrays never
move in memory as a result of a garbage collect; an array can only
move when you REDIM or ERASE any other array.

As items on the heap are liable, without warning, to move about,
ordinary pointers are useless.

For this reason strings and arrays are accessed via descriptors,
which exist normally in the global area and which themselves
contain actual pointers to the data on the heap. As the memory
manager knows where all the descriptors are it can update their
pointers when a garbage collect occurs.

Assembly Language Page 337

Incidentally, the garbage collector itself is very fast; for example it can
compact around 350k of fragmented heap in under 2 seconds, so
there is never any noticeable delay in the running of a program
should it have to garbage collect.

Memory Formats

|Single-precision Floating Point]

These uses the Motorola Fast Floating Point (FFP) format. The
format is unusual by most standards, but was designed solely with
the 68000 architecture in mind, and is as a result very fast. It is the
not the same format as used by AmigaBASIC so the CVS and MKS$
functions also do IEEE-FFP conversions.

31 876 0
Mantissa S| Exponent
Figure E-2 Single Precision

The sign bit is O for positive numbers and 1 for negative numbers.
The mantissa has an implied binary point at bit 32 and thus ranges
in value from 0.5 to <1.0. The exponent is held in excess -64. The
number zero is represented with 32 bits of zero.

[Double-precision Floating Point |

These use the IEEE format double-precision floats, each occupying 8
bytes, i.e. two longs. Doubles are actually stored in variables in
reverse-long order due to the way the MOVEM instruction works,
which is the opposite way to AmigaBASIC.

& &2 & 51 0

S Exponent Mantissa

Figure E-3 Double Precision Format

Page 338 Assembly Language

The sign bit is 0 for positive numbers and 1 for negative numbers.
The mantissa has an assumed bit of 1; if present it would be at bit 52.
The exponent is held in excess-1023. The number zero is represented
with 64 bits of zero.

Linkable Code

Although this version of BASIC has many powerful features and
extensions, occasionally there is a command or function that is not
part of standard BASIC. Additionally, a specific task can be very time
critical and need all the speed it can get. For these reasons, HiSoft
BASIC Professional has the ability to call C or assembly language
subroutines.

[External Definition

In order to call C or assembly-language the compiler allows linkable
code to be generated and this is specified using the P+ option. In
addition the program has to declare the names of the routines to call
and the number of parameters, using the DECLARE statement.

The linkable code generated by the compiler refers to lower-cased
version of the names specified (BASIC is case-insensitive) preceded
with an underscore character, to be compatible with the popular C
compilers for the Amiga. This also helps prevent clashes between C
function names and those in the run-time system.

Calling C Functions

C functions are called in a very similar way to the way simple
machine-code is called with the CALL LOC statement. Any
parameters are coerced into long integers and pushed on the
machine stack in reverse order (i.e. C order). All registers are
destroyable and any return value should be in dO.

Assembly Language Page 339

Calling Assembly Language Functions

Assembly language functions are called as above, though the
assembly-language programmer has to make the function look like a
C function. This involves reading parameters from the stack and
exporting a lower-case function name starting with an underscore.
The code should be assembled to linkable, case dependent code.

Linking

You should end up with a linkable file from the BASIC compiler and a
linkable file from the C compiler or assembler. They should be linked
together using a linker which supports the standard AmigaDOS
format (e.g. ALink or BLink). You may also need to specify C compiler
libraries if your C functions have referred to any.

Linked Examples

Here is an artificially sirnple example of the process, starting with the
BASIC program which uses an external function to compare two
long integers:

REM S$OPTION P+,FTEST.OBJ
DECLARE FUNCTION cequal& (pl&,p2&)
PRINT cequalé&(l,2),cequal&(10,10)

Now the C function:

long cequal(a,b)
long a,b

{

return (a==Db)

}

and the equivalent {Devpac Amiga 2) assembly-language:

opt 1+, c+
xdef _cequal

_cequal move.l 4 (sp),do
cmp. 1 8 (sp),do

seq do
ext.w do
ext.1l do
rts
Page 340 Assembly Language

Appendix F
Hints and Tips

This chapter shows how you can get the most out of programs
written with the HiSoft BASIC Professional compiler. It is not
necessarily intended only for the advanced programmer.

Using HiSoft BASIC Professional

Making a more efficient program requires knowledge of the features
of HiSoft BASIC Professional. The following suggestions are intended
to give you a firmer understanding of what can be done; we also hope
that you will use this information as the basis for a more detailed
exploration of HiSoft BASIC Professional.

|defint a-z

It is a good idea to have this line in your program, it makes the
default variable type a short integer. The main benefit from using ints
is speed. The source becomes more understandable when &, |, and #
are used explicitly.

[rem $Soption v+

This forces variable checks on. The primary benefit of this is that you
can avoid unnecessary bugs caused by undefined variables in sub-
programs and functions.

ISTATIC variables in SUBs and FNs

STATIC variables retain their values when a SUB or FN is exited and re-
entered. There is a speed benefit in using STATICs as opposed to
LOCALs: STATICs are only allocated once, whereas LOCALs must be
allocated every time a SUB or FN is invoked. If your SUB or FN is
recursive then LOCAL variables must be used.

Hints & Tips Page 341

INCR and DECR

These two statements respectively increment and decrement the
value of a variable by one. When used on array elements they are
considerably faster than e.g. Arr(1)=Arr(1)+1.

== |

The double-equals comparison operator has different meanings
depending on the type of value compared. When comparing strings,
a case-independent comparison is made. It is considerably faster
than using UCASE$ or LCASE$ and then comparing, or doing
something like IF fred$="A" or fred$="a" THEN.. When
comparing numeric values, == is used as ‘almost equals’; rounding
errors can thus be avoided. There is a performance degradation when
using == on numeric values.

! as opposed to # |

When using floating point maths, it is a good idea to know exactly
how much accuracy is actually necessary. Single-precision is much
faster than double-precision, due to the degree of accuracy required.
If you want floating point, but do not need such a high degree of
precision, single-precision is the variable type to use.

IVARPTR, SADD and PEEK]

When using SADD, you must be very careful. The reason for this is
quite simple: due to the dynamic heap allocation and the blindingly-
fast garbage collection of HiSoft BASIC Professional, strings are
prone to move around without any prior notice. This is normally
completely transparent to the user, but when using these functions
it becomes a factor to be reckoned with. If you are going to use them,
call the functions just before accessing the variable or array. In
addition the address of any array will be invalid if a REDIM or ERASE
statement has been executed since VARPTR was used to find the
address.

Page 342 Hints & Tips

Let us suppose an entire file has been loaded into a single string
using INPUTY; this is quite possible because strings in HiSoft BASIC
Professional are only limited by available memory. SADD is called to
determine where the string is. To go through the file at high speed, all
you need is to remember your place in the string and PEEK from the
location that you need. Do not use PEEKW or PEEKL because strings
can be on odd boundaries and an address exception will occur if you
try to read a word or long from an odd address.

Making Your Programs "No-Limits"

If you have been used to programming in more primitive versions of
BASIC or in Pascal or C, avoiding arbitrary restrictions on the size
and type of data that your program can manipulate can be hard
work. For example, having a limit on the length of names that you
can type into a business application can sometimes be very
annoying. Similarly avoiding limits on the lengths of files and in line
lengths can save you a lot of time, if say the file in question has odd
end-of-line markers that mean that your program treats the whole
file as one line. The following hints should help to avoid this sort of
problem:

When reading in or adding to arrays, have code to make the array
larger if need be. In general adding a few elements at a time is not a
good idea because the program may start spending all its time
moving arrays. Normally it is a good idea to start off an array with
the size as just larger than a typical requirement, but if an array is
only used occasionally then the dimension can start off small. For
example, if writing a cross-reference program for HiSoft BASIC
Professional programs, it would probably a good idea to start by
assuming that the number of line numbers is small (say 10) and
then if the program turns out to be a horrible old-fashioned program
with a line number on every line then the arrays used for holding
them can be grown using REDIM APPEND at, say, 100 elements at a
time.

When using byte or record numbers in files or strings use long
integer variables (terminated with &). This should remove
automatically many 32k or 64k limits on programs that are
designed with 16-bit integers in mind.

Hints & Tips Page 343

Hints & Tips

Page 344

Appendix G
Bibliography

This bibliography contains our suggestions for further reading on
the subject of the Amiga, BASIC, and the operating system. The
views expressed are our own and as with all reference books there is
no substitute for looking at the books in a good bookshop before
making a decision.

BASIC

Amiga BASIC

Published by Commodore-Amiga, Inc.

Yes we know it comes free with your computer but it is a reasonable
description of BASIC.

AmigaBASIC Inside and Out
by Data Becker

Published by Abacus

A good book for those who understand the basics (pun intended!)
and who wish to learn more about the Amiga-specific features of
BASIC. The programming style is rather un-structured though
(hardly a SUB to be seen!).

Advanced Amiga BASIC
by Tom R. Halfhill & Charles Brannon
Published by Compute!

To quote the first line, this “is a book for intermediate Amiga BASIC
programmers who want to become advanced programmers”. It lists
many well-written non-trivial BASIC programs as well as shorter
examples.

Bibliography Page 345

Amiga Technical Manuals

Programmer's Guide to the Amiga
by Robert A. Peck

Published by Sybex

Written with the C or assembly-language programmer in mind it is a
much less daunting introduction to the complex operating system
than buying all the ROM Kernal Manuals and taking a week off to
read them.

ROM Kernal Manuals Volumes 1 and 2

Published by Addison Wesley

These are the official technical manuals, published originally by
Commodore-Amiga themselves. They detail the whole operating
system (except Hardware and Intuition) but are getting a bit old now.
A new edition is expected at the time of writing,.

Intuition - The Amiga User Interface
by R.J.Mical and Susan Deyl
Published by Addison Wesley

The definitive guide to Intuition, co-written by the man who designed
and implemented it in the first place. The only snag is the current
version refers only to the very old version 1.0. Its very readable,
containing the memorable programming advice Dare to be gorgeous
and unique! But don’t ever be cryptic or otherwise unfathomable.
Make it unforgettably great.

Page 346 Bibliography

68000

Mé68000 Programmer's Reference Manual
Published by Prentice-Hall

This is the definitive guide to the 68000 instruction set produced by
Motorola themselves.

ISBN 0-13-566795-X

68000 Tricks and Traps
by Mike Morton
BYTE September 1986 issue

By far the best article on 68000 programming we have ever seen. We
wish there was a book like this.

Bibliography Page 347

Bibliography

Page 348

Appendix H
Technical Support

So that we can maintain the quality of our technical support service
we are detailing how to take best advantage of it. These guidelines will
make it easier for us to help you, fix bugs as they get reported and
save other users from having the same problem. Technical support is
available in four ways:

Phone our technical support hour is normally between 3pm and
4pm, though non-European customers' calls will be
accepted at other times.

Post if sending a disk, please put your name & address on it.

BIX™ our username is (not surprisingly) hisoft. Would UK
customers please use CIX or more old fashioned methods;
it's cheaper for everyone.

CIX™ our username is (still not surprisingly) hisoft.

For bug reports, please always quote the version number of the
program (the one displayed in the window title after loading the
compiler) and the serial number found on your master disk.

If you think you have found a bug, try and create a small program
that reproduces the problem. It is always easier for us to answer °
your questions if you send us a letter and, if the problem is with a
particular source file, enclose a copy on disk (which we will return).

Upgrades

As with all our products, HiSoft BASIC Professional is undergoing
continual development and, periodically, new versions become
available. We make a small charge for upgrades, though if extensive
additional documentation is supplied the charge may be higher. All
users who return their registration cards will be notified of major
upgrades.

Suggestions

We welcome any comments or suggestions about our programs and,
to ensure we remember them, they should be made in writing.

Technical Support Page 349

A

Index

Page 350

Index

A Phone Directory 14
ABS function 84

address
of subprogram 282
of variable 281

Advanced Arrays 78
AmigaDOS Error Numbers 305
AND 63

APPEND 206, 230

AREA statement 85

AREAFILL statement 86

Array Checks 294

Arrays 62
Advanced 78
and Sub-programs 76
Local 77

ASC function 87
Assembly Language 333
assembly-language 296, 298
ATN function 88

Auto full-size 47

Auto Indent 47

back-up 7

Backspace key 40
Backups 47

Bad file mode 309

Bad file name 309

Bad file number 309
Bad record number 310
BEEP statement 89
Bibliography 345
Binary 90

Binary Constants 58
BINBIN$ function 90
BLOAD statement 91
break checks 92, 295

Break pressed 310
BREAK statement 92
BSAVE statement 93
C 296
CALL 54
CALL LOC statement 96
CALL statement 94
CALLS statement 97
CASE statement 248
CDBL function 98
CHAIN statement 99
Changeable Options 301
Character constants 59
Character Set 51
CHDIR statement 100
CHRS$ function 101
CINT function 102
CIRCLE statement 103
clear

screen 108
CLEAR statement 105
CLI 35, 301, 304
CLNG function 106
CLOSE 19
CLOSE statement 107
closing of windows 293
closing windows 289
CLS statement 108
COLLISION function 110
COLLISION statement 109
COLOR statement 111
command line 113
Command Reference 83
COMMANDS$ function 113

COMMON SHARED statement
114

Index

Page 351

Compilation Errors 313
Compiler from the CLI 302
Compiler Options 293, 294
Compiling 48

Compiling to Disk 11
CONST statement 115
Constants 26

Converting Programs from Other

BASICs 327
COS function 116
create

directory 189
CSNG function 117
CSRLIN function 118

cursor
set position 178

Cursor keys 39

cursor position 216

CVD 119

CVFFP 119

CVI 20, 119

CVL 20, 119

CVSs 119

DATA statement 121

Data Types 56

DATA. 229

DATE$ function 122

De-tokenising 327

Debugging 336

Decimal numbers 57

DECLARE 74

DECLARE statement 123

DECR 32

DECR statement 124

DEF FN statement 125

default window 299, 304

DEFDBL, DEFINT, 128

Delete
all the text 42
directory 239

file 165
to end of line 41
Delete key 40
Deleting text 41
Descriptors 337
Device function unavailable 310
Device I/0O error 310
DIM SHARED 76
DIM statement 129

Directory 43
changing current 100
create 189
delete 239

Disk full 310

Disk write protected 310
Division by zero 310

Double Clicking 49

Double precision numbers 57
DO...LOOP statement 131
drawing mode 111

Editor from the CLI 301
ELSE statement 155

end of file
go to 41

End of line
delete to 41

END statement 133
EOF function 135
EQV 63
ERASE 78
ERASE statement 136
ERL 137, 296
ERR 137
Error

Jump to 49
Error Messages 295
ERROR statement 138
event checks 293
EXIT statement 139
EXP function 140
FEXISTS function 141

Page 352

Index

1

Index

FIELD 16

FIELD overflow 310
FIELD statement 142
file

delete 165
rename 195

file handling 14
create 206
length of file 179
open 206

File not found 311

File Requester 38

FILES statement 143

FIX function 144
formatted output 221
FOR...NEXT statement 145
FRE function 147
FUNCTION 74

functions 66, 125

names. 61

User-Defined 73
GET statement 20

file i/o 147
GOSUB 237, 298
GOTO 61
GOTO statement 153
graphics

circle 103

colors 111

drawing mode 111

get area 149

read pixel color 214

scroll 247
Guru 294, 298
Hanoi

Towers of 21

heap 296, 337
Help Screen 46

HEX$ function 154
hexadecimal 154
Hexadecimal Constants 57
Hints and Tips 341
hisoftbasic.library 12, 303
Icon File 295

IF statement 155

Illegal function call 311
IMP 63

INCR 32

INCR statement 157

Indenting
Auto 47

Initial Window 304
INKEY$ function 158
Input past end 311
INPUT statement 160
INPUT# 207

INPUT# statement 161
INPUT$ 207

INPUT$ statement 162
Inserting Text 43
INSTR function 163
Insufficient Memory 296
INT function 164
Integers 56

JAM1 111

JAM2 111

joystick 260, 263
Jump to Error 49

Jjustify
left 183
right 241

Keep Size 296
KILL statement 165
labels 53

Index

Page 353

LBOUND 78
LBOUND function 166
LCASE$ function 167
LEFT$ function 168
LEN function 169
LET statement 170
LIBRARY statement 171
Limitations 80
LINE INPUT statement 174
LINE INPUT# statement 175
Line numbers 53, 296
LINE statement 172
Linkable Code 296, 339
Loading Text 43
LOC function 176
Local Arrays 77
LOCAL statement 177
Local variables 72
LOCATE statement 178
LOF 207
LOF function 179
LOG 180
LOG10 180
Long Integers 56
LOOP statement 131
lower case 167
LPOS function 181
LPRINT, LPRINT USING 182
LPT1 207
LSET 18, 190
LSET statement 183
machine code

calling 96

libraries 171
match

string within string 163
Maths Stack 300
memory

free 147
Memory Formats 338

Memory Map 335
MENU function 186
MENU statement 184
Meta-Commands 293

Microsoft BASIC
New-style 330
Old-style 330

MID$ function 187

MID$ statement 188

MKD$ 119, 190

MKDIR statement 189
MKFFP$ 119, 190

MKI$ 18, 119, 190

MKL$ 18, 119, 190

MKS$ 119, 180

MOD 63

MOUSE function 192
MOUSE statement 194
NAME statement 195

NOT 63

Numbers 56

OBJECT statements 196
OCTS$ function 197

Octal 197

Octal Constants 58

ON BREAK GOSUB 293, 295
ON COLLISION GOSUB 293
ON MENU GOSUB 293

ON MOUSE GOSUB 293
ON TIMER GOSUB 293
Once-only Options 300
ON...BREAK statement 198
ON...COLLISION statement 199
ON...ERROR statement 200
ON...GOSUB statement 201
ON...GOTO statement 202
ON...MENU statement 203
ON...MOUSE statement 204
ON...TIMER statement 205
OPEN statement 206

Page 354

Index

l

Index

Operators 63

OPTION BASE 78, 295
OPTION BASE statement 208
Option Summary 300
OR 63

Out of data 311

Out of memory 311
OUTPUT 206

Output Filename 297
Overflow 311

Overflow Checks 297
PAINT statement 209
PALETTE 111

PALETTE statement 210
PAR 207

Parameters
Value 69
Variable 67

Path not found 312
Path/file access error 312
PATTERN statement 211
PCOPY statement 212
PEEK 213

PEEKB, PEEKL, PEEKW 213
POINT function 214

POKE, POKEB, POKEL, POKEW

215

POS function 216
Preferences 46

PRESET statement 217
PRINT 290

PRINT statement 218

PRINT USING statement 221
PRINT# 207, 220

PRINT# USING 220

PRT 207

PSET statement 224
PTAB function 225

PUT
file I/O statement 226
graphics statement 227

PUT statement 18

Quitting HiSoft BASIC
Professional 41

RANDOM 206

random access 119, 142
random numbers 240
random-access 135, 148, 226
RANDOMIZE 240
RANDOMIZE statement 228

read
keyboard without echo 158

READ statement 229
README File 7

recursion 24, 72

REDIM 79

REDIM APPEND. 79
REDIM statement 230
Redimensioned array 312
Registration Card 7

REM $EVENT 293

REM $INCLUDE 293

REM $OPTION 294

REM statement 231
Rename file 195
REPEAT...END REPEAT 232
Replacing Text 43

Reserved Words 60, 331
RESET statement 234
RESTORE statement 235
RESUME statement 236
RESUME without error 312

Index

Page 355

return code 261
RETURN statement 237
RETURN without GOSUB 312
RIGHT$ function 238
RMDIR statement 239
RND function 240
RSET 190, 241
RUN statement 242
Run-time Errors 306
Running Programs 49
SADD function 243
Saving Preferences 47
Saving Text 42
SAY statement 244
SCREEN statement 245
screendump 212
SCROLL statement 247
search

within string 163
Searching 43
SELECT 30
SELECT...END SELECT 248
SER 207
SGN function 250
Shared Library 12, 298, 303
SHARED statement 251
SHARED variables 70, 76
SIN function 252
Single precision numbers 56
SLEEP statement 253
SOUND statement 254
SOUND. 283
SPACE$ function 256
SPC function 257
Special Characters 4
SQR function 258
square root 258
Stack Checks 298
Stack Size 302

stand-alone 12, 303
Stand-Alone Code 298
STATIC statement 259
STATIC variables 69
STICK function 260
STOP statement 261
STR$ function 262
STRIG function 263
string

address of 243

String expression too complex
300

String formula too complex 312
STRING$ function 264

Strings 56

sub-program 23

sub-programs 54, 66
and Arrays 76

subprogram
address of 282

subprograms

calling 94
Subscript out of range 312
SUB...END SUB 265
Suggestions 349
SWAP statement 267
Symbolic Debug 298
SYSTAB function 268
System Requirements 3
SYSTEM statement 270
TAB function 271
Tab key 40
Tab setting 46
TAN function 272
Technical Support 349
Temporary String Descriptors

Text Buffer 46
The Editor 36
THEN statement 155

Page 356

Index

Index

TIME$ function 273
TIMER function 275
TIMER statement 274
Too many files 312
Tool Type 304
top of file

go to 41
TRANSLATE$ function 276
TRON,TROFF statements 277
Tutorial 9
Type mismatch 313
Typestyles 4
Typography 4
UBOUND 78
UBOUND function 278
UCASE$ function 279
UnDelete Line 41
Underlines 298
Upgrades 349
User-Defined Functions 73
VAL function 280
Value Parameters 69
variable

address of 281
Variable Checks 299
Variable Parameters 67

Variables 60
LOCAL 72
SHARED 70
STATIC 69

VARPTR function 281
VARPTRS function 282
Warnings 299

WAVE statement 283
WHILE...WEND 284
WIDTH statement 285

Window

Usage 49
Window Defeat 299
WINDOW Function 289
WINDOW statements 286
WRITE statement 290
WRITE# 207
WRITE# statement 291
Wrong number of subscripts 313
XOR (exclusive or) 63

Index

Page 357

Come and join us at the Roundtable,™
Where the GEnie and the Griffin meet!

Does this sound like a fantasy? Well, it may just be a dream come true! When
General Electric's high-tech communications network meets MICHTRON's
programmers and support crew, ST users around the country will hear more, know
more, and save more.

We know that our low prices and superior quality wouldn't mean as much to you
without the proper support and service to back them up.

So we are now available on GEnie, the General Electric Network for Information
Exchange. GEnie is a computer communications system which lets you use your
personal computer, modem, and communication software to gain access to the latest
news, product information, electronic mail, games, and MICHTRON's own
Roundtable (See the special MICRODEAL Section for game information)!!

The Roundtable Special Interest Groups (SIG) gives you a means of conveniently
obtaining news about our current products, new releases, and future plans.
Messages directly from the authors give you valuable technical support of our
products, and the chance to ask questions (usually answered within a single business
day).

GEnie differs from other computer communication networks in its incredibly low
fees. With GEnie, you don't pay any hidden charges or minimum fees. You pay
only for the time you're actually on-line with the MICHTRON product support
Roundtable, and the low first-time registration fee.

For more information on GEnie, follow this simple procedure for a free trial run.
Then if you like, have ready your VISA, Mastercard or checking account number
and you can set up your personal account immediately -- right on-line!

1. Set your modem for half duplex (local echo)--300 or 1200 baud.
2. Dial 1-800-638-8369. When connected, type HHH and press Return.

3. At the U#= prompt, type XJM11957,GENIE and press Return.

And don't forget, MICHTRON's Bulletin Board System, The Griffin BBS, is still
going strong (the griffin is the half-lion/half-eagle creature on our logo). Our
system is located at MICHTRON headquarters in Pontiac, Michigan. For a trial run,
call (313) 332-5452.

GEnie and Roundtable are Trademarks of General Electric Information Services.

Page 358 HiSoft BASIC Professional

0000000000000 000000G0000C0C000CCRO00CO00CQY;:

o b00bb00000T

-
-»
<
&
P
4
#.
-
®
-
-

|

oo

bobbbbbbe

576 8. Telegraph, Pontiac, M1 48053
Orders and Information (313) 334-5700

ﬁﬂlith‘ron@

b oo

