techtravels.org
working FPGA version of the amiga floppy project

working FPGA version of the amiga floppy project

So, I’ve been working on the FPGA version of the amiga floppy project for some time.  I just recently had a fair bit of free time, and so everything came together rather quickly!

I’m now able to read amiga floppy disks in using the same Java client software I had developed for use with the Parallax SX microcontroller board.  There were a few minor changes in the software — most notably the read data routine from the hardware.

I’ve written the code in Verilog on a Xilinx Spartan-3e evaluation board.

The various hardware parts I’ve described:

  • UART: Written from scratch, a transmitter and a receiver.   Simple to use, variable baud rates.
  • FIFO: Generated from Xilinx’s CoreGen. This connects the floppy interface to the USB interface. 32k bytes
  • FSM to always empty the FIFO to the PC.  Once something goes in the FIFO, it immediately gets sent to the PC
  • Read-floppy-FSM: Stores 225ms of Delta T’s (aka time between edges) as 8-bit integers into the FIFO.
  • Command FSM: Receives single-character commands from the java software to execute (R for read, U for upper head, L for lower head, etc)
  • Transmit test pattern routine: Sends 32k of data to the PC to test for reliable communication

A couple advantages with the FPGA solution:

  • We transmit the data to the PC as soon as it’s available.  I want to characterize the actual latency, but it should be pretty small.  This is different from my load->FRAM, and then FRAM-> PC method.  This method should be much faster and we’re just not idling for 225ms.
  • Instead of transmitting the bit-sync’d raw MFM to the PC, I’m sending the delta T’s.  While this requires a little more processing on PC, the PC can more easily determine why a particularly sector can’t be read.  For instance, is the time between pulses too small? Too large?  On a fringe edge?  Plus, since the Java decodes these, I can now add sliders for “acceptable delta T’s” for each 4, 6, or 8us windows.  Before that would require modifying the firmware on the microcontroller.  I can also start to do statistical analysis on the pulse times.

I am currently doing about 430ms per track.  This sucks.  I was beating that by 100ms with my microcontroller.  However, the problem is that because a variable amount of data is going to the PC, the PC receiving code does not know when exactly to stop receiving, so there’s a wait-timer which I have to optimize.  Once I receive the minimum amount of data, I wait 100ms since the last received data, and then exit.  I’ve got to put my logic analyzers in place and figure out how to optimize it.

Denis@h3q can read a disk in 43s, which is pretty darn good.  He is using tokens like I mentioned here and here and here.  I’m transferring much more data though, which gives me more information.  I like his time, and maybe that would be a nice goal to beat!  Wow. That’s only 269ms/track.  Hrrrmm…. that’s pretty good.

keith

Amateur Electronics Design Engineer and Hacker

2 comments